Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Learning with Differential Privacy (2402.02230v1)

Published 3 Feb 2024 in cs.LG, cs.AI, and cs.DC

Abstract: Federated learning (FL), as a type of distributed machine learning, is capable of significantly preserving client's private data from being shared among different parties. Nevertheless, private information can still be divulged by analyzing uploaded parameter weights from clients. In this report, we showcase our empirical benchmark of the effect of the number of clients and the addition of differential privacy (DP) mechanisms on the performance of the model on different types of data. Our results show that non-i.i.d and small datasets have the highest decrease in performance in a distributed and differentially private setting.

Citations (1)

Summary

We haven't generated a summary for this paper yet.