Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey to Recent Progress Towards Understanding In-Context Learning (2402.02212v3)

Published 3 Feb 2024 in cs.CL

Abstract: In-Context Learning (ICL) empowers LLMs with the ability to learn from a few examples provided in the prompt, enabling downstream generalization without the requirement for gradient updates. Despite encouragingly empirical success, the underlying mechanism of ICL remains unclear. Existing research remains ambiguous with various viewpoints, utilizing intuition-driven and ad-hoc technical solutions to interpret ICL. In this paper, we leverage a data generation perspective to reinterpret recent efforts from a systematic angle, demonstrating the potential broader usage of these popular technical solutions. For a conceptual definition, we rigorously adopt the terms of skill recognition and skill learning. Skill recognition selects one learned data generation function previously seen during pre-training while skill learning can learn new data generation functions from in-context data. Furthermore, we provide insights into the strengths and weaknesses of both abilities, emphasizing their commonalities through the perspective of data generation. This analysis suggests potential directions for future research.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com