2000 character limit reached
Operator Dimension Parity Fractionalization (2402.02195v2)
Published 3 Feb 2024 in hep-th and hep-ph
Abstract: Lorentz invariant quantum field theories (QFTs) with fermions in four spacetime dimensions (4D) have a $\mathbb{Z}_4$ symmetry provided there exists a basis of operators in the QFT where all operators have even operator dimension, $d$, including those with $d > 4$. The $\mathbb{Z}_4$ symmetry is the extension of operator dimension parity by fermion number parity. If the $\mathbb{Z}_4$ is anomaly-free, such QFTs can be related to 3D topological superconductors. Additionally, imposing the $\mathbb{Z}_4$ symmetry on the Standard Model effective field theory severely restricts the allowed processes that violate baryon and lepton numbers.
- P. W. Anderson, Science 177, 393 (1972).
- V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
- F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).
- P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).
- G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964).
- Y. Nambu, Phys. Rev. 117, 648 (1960).
- J. Goldstone, Nuovo Cim. 19, 154 (1961).
- J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962).
- Y. You, Y. BenTov, and C. Xu, (2014), arXiv:1402.4151 [cond-mat.str-el] .
- Y. Tachikawa and K. Yonekura, SciPost Phys. 7, 058 (2019), arXiv:1805.02772 [hep-th] .
- I. n. García-Etxebarria and M. Montero, JHEP 08, 003, arXiv:1808.00009 [hep-th] .
- C.-T. Hsieh, (2018), arXiv:1808.02881 [hep-th] .
- E. Witten, Rev. Mod. Phys. 88, 035001 (2016), arXiv:1508.04715 [cond-mat.mes-hall] .
- E. Ma, (2023a), arXiv:2311.05859 [hep-ph] .
- E. Ma, (2023b), arXiv:2311.11455 [hep-ph] .
- J. Wang, Phys. Rev. D 106, 105009 (2022), arXiv:2109.15320 [hep-th] .
- G. ’t Hooft, NATO Sci. Ser. B 59, 135 (1980).
- X.-z. Dai and D. S. Freed, J. Math. Phys. 35, 5155 (1994), [Erratum: J.Math.Phys. 42, 2343–2344 (2001)], arXiv:hep-th/9405012 .
- T. Banks and M. Dine, Phys. Rev. D 45, 1424 (1992), arXiv:hep-th/9109045 .
- L. E. Ibanez, Nucl. Phys. B 398, 301 (1993), arXiv:hep-ph/9210211 .
- C. Csaki and H. Murayama, Nucl. Phys. B 515, 114 (1998), arXiv:hep-th/9710105 .
- A. V. Manohar 10.1093/oso/9780198855743.003.0002 (2018), arXiv:1804.05863 [hep-ph] .
- E. E. Jenkins, A. V. Manohar, and P. Stoffer, JHEP 01, 084, arXiv:1711.05270 [hep-ph] .
- G. Buchalla, O. Catá, and C. Krause, Phys. Lett. B 731, 80 (2014), arXiv:1312.5624 [hep-ph] .
- Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998), arXiv:hep-ex/9807003 .
- Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 89, 011301 (2002), arXiv:nucl-ex/0204008 .
- R. L. Workman and Others (Particle Data Group), PTEP 2022, 083C01 (2022).
- A. Kobach, Phys. Lett. B 758, 455 (2016), arXiv:1604.05726 [hep-ph] .
- J. Heeck and V. Takhistov, Phys. Rev. D 101, 015005 (2020), arXiv:1910.07647 [hep-ph] .
- A. Helset and A. Kobach, Phys. Lett. B 800, 135132 (2020), arXiv:1909.05853 [hep-ph] .
- V. Santoro et al., (2023a), arXiv:2309.17333 [physics.ins-det] .
- V. Santoro et al., (2023b), arXiv:2311.08326 [physics.ins-det] .
- D. B. Kaplan, Phys. Lett. B 288, 342 (1992), arXiv:hep-lat/9206013 .
- Y. B. Zeldovich, I. Y. Kobzarev, and L. B. Okun, Zh. Eksp. Teor. Fiz. 67, 3 (1974).
- M. Kawasaki and T. T. Yanagida, JHEP 11, 106, arXiv:2304.10100 [hep-ph] .
- J. D. Hunter, Computing in Science & Engineering 9, 90 (2007).
- Wes McKinney, in Proceedings of the 9th Python in Science Conference, edited by Stéfan van der Walt and Jarrod Millman (2010) pp. 56 – 61.
- T. pandas development team, pandas-dev/pandas: Pandas (2020).