Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 454 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Parametric Bootstrap on Networks with Non-Exchangeable Nodes (2402.01866v2)

Published 2 Feb 2024 in stat.ME

Abstract: This paper studies the parametric bootstrap method for networks to quantify the uncertainty of statistics of interest. While existing network resampling methods primarily focus on count statistics under node-exchangeable (graphon) models, we consider more general network statistics (including local statistics) under the Chung-Lu model without node-exchangeability. We show that the natural network parametric bootstrap that first estimates the network generating model and then draws bootstrap samples from the estimated model generally suffers from bootstrap bias. As a general recipe for addressing this problem, we show that a two-level bootstrap procedure provably reduces the bias. This essentially extends the classical idea of iterative bootstrap to the network setting with a growing number of parameters. Moreover, the second-level bootstrap provides a way to construct higher-accuracy confidence intervals for many network statistics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)