Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient implementation of discrete-time quantum walks on quantum computers (2402.01854v2)

Published 2 Feb 2024 in quant-ph

Abstract: Quantum walks have proven to be a universal model for quantum computation and to provide speed-up in certain quantum algorithms. The discrete-time quantum walk (DTQW) model, among others, is one of the most suitable candidates for circuit implementation, due to its discrete nature. Current implementations, however, are usually characterized by quantum circuits of large size and depth, which leads to a higher computational cost and severely limits the number of time steps that can be reliably implemented on current quantum computers. In this work, we propose an efficient and scalable quantum circuit implementing the DTQW on the $2n$-cycle based on the diagonalization of the conditional shift operator. For $t$ time-steps of the DTQW, the proposed circuit requires only $O(n2 + nt)$ two-qubit gates compared to the $O(n2 t)$ of the current most efficient implementation based on quantum Fourier transforms. We test the proposed circuit on an IBM quantum device for a Hadamard DTQW on the $4$- and $8$-cycle characterized by periodic dynamics and recurrent generation of maximally entangled single-particle states. Experimental results are meaningful well beyond the regime of few time steps, paving the way for reliable implementation and use on quantum computers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (77)
  1. Quantum random walks. Phys. Rev. A 1993, 48, 1687–1690. https://doi.org/10.1103/PhysRevA.48.1687.
  2. Quantum computation and decision trees. Phys. Rev. A 1998, 58, 915–928. https://doi.org/10.1103/PhysRevA.58.915.
  3. Quantum mechanics and path integrals; International series in pure and applied physics, McGraw-Hill: New York, NY, 1965.
  4. Ambainis, A. Quantum walks and their algorithmic applications. International Journal of Quantum Information 2003, 01, 507–518. https://doi.org/10.1142/S0219749903000383.
  5. Exponential Algorithmic Speedup by a Quantum Walk. In Proceedings of the Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, New York, NY, USA, 2003; STOC ’03, p. 59–68. https://doi.org/10.1145/780542.780552.
  6. Kendon, V.M. A random walk approach to quantum algorithms. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2006, 364, 3407–3422. https://doi.org/10.1098/rsta.2006.1901.
  7. Quantum random-walk search algorithm. Phys. Rev. A 2003, 67, 052307. https://doi.org/10.1103/PhysRevA.67.052307.
  8. Spatial search by quantum walk. Phys. Rev. A 2004, 70, 022314. https://doi.org/10.1103/PhysRevA.70.022314.
  9. Grover Search as a Naturally Occurring Phenomenon. Phys. Rev. Lett. 2020, 124, 180501. https://doi.org/10.1103/PhysRevLett.124.180501.
  10. Quadratic Speedup for Spatial Search by Continuous-Time Quantum Walk. Phys. Rev. Lett. 2022, 129, 160502. https://doi.org/10.1103/PhysRevLett.129.160502.
  11. A classical approach to the graph isomorphism problem using quantum walks. Journal of Physics A: Mathematical and Theoretical 2008, 41, 075303. https://doi.org/10.1088/1751-8113/41/7/075303.
  12. A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. Journal of Physics A: Mathematical and Theoretical 2014, 47, 325302. https://doi.org/10.1088/1751-8113/47/32/325302.
  13. Quantum walk inspired algorithm for graph similarity and isomorphism. Quantum Information Processing 2020, 19, 281. https://doi.org/10.1007/s11128-020-02758-7.
  14. Comparing classical and quantum PageRanks. Quantum Information Processing 2016, 16, 25. https://doi.org/10.1007/s11128-016-1456-z.
  15. Discrete-time quantum walk algorithm for ranking nodes on a network. Quantum Information Processing 2020, 19, 158. https://doi.org/10.1007/s11128-020-02650-4.
  16. Quantum link prediction in complex networks. Phys. Rev. A 2023, 107, 032605. https://doi.org/10.1103/PhysRevA.107.032605.
  17. Link Prediction with Continuous-Time Classical and Quantum Walks. Entropy 2023, 25, 730. https://doi.org/10.3390/e25050730.
  18. Community Detection in Quantum Complex Networks. Phys. Rev. X 2014, 4, 041012. https://doi.org/10.1103/PhysRevX.4.041012.
  19. Discrete-time quantum walk on complex networks for community detection. Phys. Rev. Res. 2020, 2, 023378. https://doi.org/10.1103/PhysRevResearch.2.023378.
  20. Quantum tunneling and quantum walks as algorithmic resources to solve hard K-SAT instances. Scientific Reports 2021, 11, 16845. https://doi.org/10.1038/s41598-021-95801-1.
  21. Black-Box Hamiltonian Simulation and Unitary Implementation. Quantum Info. Comput. 2012, 12, 29–62.
  22. Relationship between quantum walks and relativistic quantum mechanics. Phys. Rev. A 2010, 81, 062340. https://doi.org/10.1103/PhysRevA.81.062340.
  23. Quantum walks as massless Dirac fermions in curved space-time. Phys. Rev. A 2013, 88, 042301. https://doi.org/10.1103/PhysRevA.88.042301.
  24. Quantum walking in curved spacetime. Quantum Information Processing 2016, 15, 3467–3486. https://doi.org/10.1007/s11128-016-1335-7.
  25. Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New Journal of Physics 2016, 18, 103038. https://doi.org/10.1088/1367-2630/18/10/103038.
  26. Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 2010, 81, 042330. https://doi.org/10.1103/PhysRevA.81.042330.
  27. Quantum logic using correlated one-dimensional quantum walks. npj Quantum Information 2018, 4, 2. https://doi.org/10.1038/s41534-017-0050-2.
  28. Universal quantum computing using single-particle discrete-time quantum walk. Scientific Reports 2021, 11, 11551. https://doi.org/10.1038/s41598-021-91033-5.
  29. Multi-qubit quantum computing using discrete-time quantum walks on closed graphs. Scientific Reports 2023, 13, 12078. https://doi.org/10.1038/s41598-023-39061-1.
  30. Perfect state transfer and efficient quantum routing: A discrete-time quantum-walk approach. Phys. Rev. A 2014, 90, 012331. https://doi.org/10.1103/PhysRevA.90.012331.
  31. İskender Yalçınkaya.; Gedik, Z. Qubit state transfer via discrete-time quantum walks. Journal of Physics A: Mathematical and Theoretical 2015, 48, 225302. https://doi.org/10.1088/1751-8113/48/22/225302.
  32. Generalized teleportation by quantum walks. Quantum Information Processing 2017, 16, 221. https://doi.org/10.1007/s11128-017-1675-y.
  33. Quantum communication protocols by quantum walks with two coins. Europhysics Letters 2019, 124, 60009. https://doi.org/10.1209/0295-5075/124/60009.
  34. Quantum direct communication protocols using discrete-time quantum walk. Quantum Information Processing 2020, 19, 295. https://doi.org/10.1007/s11128-020-02793-4.
  35. Quantum routing of information using chiral quantum walks. AVS Quantum Science 2023, 5, 025001. https://doi.org/10.1116/5.0146805.
  36. Quantum key distribution with quantum walks. Quantum Information Processing 2018, 17, 288. https://doi.org/10.1007/s11128-018-2055-y.
  37. Quantum-inspired cascaded discrete-time quantum walks with induced chaotic dynamics and cryptographic applications. Scientific Reports 2020, 10, 1930. https://doi.org/10.1038/s41598-020-58636-w.
  38. Venegas-Andraca, S.E. Quantum walks: a comprehensive review. Quantum Information Processing 2012, 11, 1015–1106. https://doi.org/10.1007/s11128-012-0432-5.
  39. Portugal, R. Quantum walks and search algorithms, 2nd ed.; Springer Nature Switzerland AG: Cham, 2018.
  40. Quantum walk and its application domains: A systematic review. Computer Science Review 2021, 41, 100419. https://doi.org/https://doi.org/10.1016/j.cosrev.2021.100419.
  41. Physical Implementation of Quantum Walks; Springer: New York, 2013.
  42. Integrated photonic quantum walks. Journal of Optics 2016, 18, 103002. https://doi.org/10.1088/2040-8978/18/10/103002.
  43. Photonic Discrete-time Quantum Walks and Applications. Entropy 2018, 20, 731. https://doi.org/10.3390/e20100731.
  44. The staggered quantum walk model. Quantum Information Processing 2016, 15, 85–101. https://doi.org/10.1007/s11128-015-1149-z.
  45. Challenges and Opportunities of Near-Term Quantum Computing Systems. Proceedings of the IEEE 2020, 108, 1338–1352. https://doi.org/10.1109/JPROC.2019.2954005.
  46. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004. https://doi.org/10.1103/RevModPhys.94.015004.
  47. Efficient quantum circuits for continuous-time quantum walks on composite graphs. Journal of Physics A: Mathematical and Theoretical 2017, 50, 055303. https://doi.org/10.1088/1751-8121/aa53a9.
  48. Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor. Phys. Rev. A 2005, 72, 062317. https://doi.org/10.1103/PhysRevA.72.062317.
  49. Efficient quantum circuit implementation of quantum walks. Phys. Rev. A 2009, 79, 052335. https://doi.org/10.1103/PhysRevA.79.052335.
  50. Efficient quantum circuits for arbitrary sparse unitaries. Phys. Rev. A 2009, 80, 062301. https://doi.org/10.1103/PhysRevA.80.062301.
  51. Efficient circuit implementation of quantum walks on non-degree-regular graphs. Phys. Rev. A 2012, 86, 042338. https://doi.org/10.1103/PhysRevA.86.042338.
  52. Circuit implementation of discrete-time quantum walks via the shunt decomposition method. Quantum Information Processing 2023, 22, 146. https://doi.org/10.1007/s11128-023-03878-6.
  53. Quantum circuits for discrete-time quantum walks with position-dependent coin operator. Quantum Information Processing 2023, 22, 270. https://doi.org/10.1007/s11128-023-03957-8.
  54. Implementation of quantum walks on IBM quantum computers. Quantum Information Processing 2020, 19, 426. https://doi.org/10.1007/s11128-020-02938-5.
  55. Discrete-time quantum walk on circular graph: Simulations and effect of gate depth and errors. International Journal of Quantum Information 2021, 19, 2150008. https://doi.org/10.1142/S0219749921500088.
  56. Experimental Implementation of Discrete Time Quantum Walk with the IBM Qiskit Library. In Proceedings of the 2021 IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), 2021, pp. 33–38. https://doi.org/10.1109/Q-SE52541.2021.00014.
  57. Comparison of quantum-walk implementations on noisy intermediate-scale quantum computers. Phys. Rev. A 2021, 103, 022408. https://doi.org/10.1103/PhysRevA.103.022408.
  58. Cycle discrete-time quantum walks on a noisy quantum computer, 2023, [arXiv:quant-ph/2307.11027].
  59. Shakeel, A. Efficient and scalable quantum walk algorithms via the quantum Fourier transform. Quantum Information Processing 2020, 19, 323. https://doi.org/10.1007/s11128-020-02834-y.
  60. Recurrent generation of maximally entangled single-particle states via quantum walks on cyclic graphs. Phys. Rev. A 2023, 108, L020401. https://doi.org/10.1103/PhysRevA.108.L020401.
  61. Quantum circuits for the realization of equivalent forms of one-dimensional discrete-time quantum walks on near-term quantum hardware. Phys. Rev. A 2021, 104, 062401. https://doi.org/10.1103/PhysRevA.104.062401.
  62. Linear-depth quantum circuits for n𝑛nitalic_n-qubit Toffoli gates with no ancilla. Phys. Rev. A 2013, 87, 062318. https://doi.org/10.1103/PhysRevA.87.062318.
  63. Elementary gates for quantum computation. Phys. Rev. A 1995, 52, 3457–3467. https://doi.org/10.1103/PhysRevA.52.3457.
  64. Trevisan, D. Lecture Notes on Mathematical Aspects of Quantum Information Theory, 2023. Available online: https://people.cs.dm.unipi.it/trevisan/teaching/PhD/2022-qinfo/2022-Qinfo-notes.pdf (accessed on Dec.20, 2023).
  65. Single-Particle Entanglement. Advanced Quantum Technologies 2020, 3, 2000014. https://doi.org/https://doi.org/10.1002/qute.202000014.
  66. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. https://doi.org/10.1103/RevModPhys.81.865.
  67. Probing Rényi entanglement entropy via randomized measurements. Science 2019, 364, 260–263. https://doi.org/10.1126/science.aau4963.
  68. Efficient quantum walk on a quantum processor. Nature Communications 2016, 7, 11511. https://doi.org/10.1038/ncomms11511.
  69. Quantum Walks on Graphs. In Proceedings of the Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, New York, NY, USA, 2001; STOC ’01, p. 50–59. https://doi.org/10.1145/380752.380758.
  70. Controlling discrete quantum walks: coins and initial states. New Journal of Physics 2003, 5, 83. https://doi.org/10.1088/1367-2630/5/1/383.
  71. Efficient decomposition methods for controlled-Rnsubscript𝑅𝑛R_{n}italic_R start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT using a single ancillary qubit. Scientific Reports 2018, 8, 5445. https://doi.org/10.1038/s41598-018-23764-x.
  72. Error suppression by a virtual two-qubit gate. Journal of Applied Physics 2023, 133, 174401. https://doi.org/10.1063/5.0151037.
  73. Experimental comparison of two quantum computing architectures. Proceedings of the National Academy of Sciences 2017, 114, 3305–3310. https://doi.org/10.1073/pnas.1618020114.
  74. Architecting Noisy Intermediate-Scale Trapped Ion Quantum Computers. In Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), 2020, pp. 529–542. https://doi.org/10.1109/ISCA45697.2020.00051.
  75. Any-To-Any Connected Cavity-Mediated Architecture for Quantum Computing with Trapped Ions or Rydberg Arrays. PRX Quantum 2022, 3, 010344. https://doi.org/10.1103/PRXQuantum.3.010344.
  76. Gray, R.M. Toeplitz and Circulant Matrices: A Review. Foundations and Trends® in Communications and Information Theory 2006, 2, 155–239. https://doi.org/10.1561/0100000006.
  77. Principles of Quantum Computation and Information; WORLD SCIENTIFIC, 2018. https://doi.org/10.1142/10909.
Citations (2)

Summary

We haven't generated a summary for this paper yet.