Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AOC-IDS: Autonomous Online Framework with Contrastive Learning for Intrusion Detection (2402.01807v1)

Published 2 Feb 2024 in cs.CR

Abstract: The rapid expansion of the Internet of Things (IoT) has raised increasing concern about targeted cyber attacks. Previous research primarily focused on static Intrusion Detection Systems (IDSs), which employ offline training to safeguard IoT systems. However, such static IDSs struggle with real-world scenarios where IoT system behaviors and attack strategies can undergo rapid evolution, necessitating dynamic and adaptable IDSs. In response to this challenge, we propose AOC-IDS, a novel online IDS that features an autonomous anomaly detection module (ADM) and a labor-free online framework for continual adaptation. In order to enhance data comprehension, the ADM employs an Autoencoder (AE) with a tailored Cluster Repelling Contrastive (CRC) loss function to generate distinctive representation from limited or incrementally incoming data in the online setting. Moreover, to reduce the burden of manual labeling, our online framework leverages pseudo-labels automatically generated from the decision-making process in the ADM to facilitate periodic updates of the ADM. The elimination of human intervention for labeling and decision-making boosts the system's compatibility and adaptability in the online setting to remain synchronized with dynamic environments. Experimental validation using the NSL-KDD and UNSW-NB15 datasets demonstrates the superior performance and adaptability of AOC-IDS, surpassing the state-of-the-art solutions. The code is released at https://github.com/xinchen930/AOC-IDS.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. H. Pourrahmani, A. Yavarinasab, R. Zahedi, A. Gharehghani, M. H. Mohammadi, P. Bastani, and J. Van herle, “The applications of internet of things in the automotive industry: A review of the batteries, fuel cells, and engines,” Internet of Things, vol. 19, p. 100579, 2022.
  2. A. A. Brincat, F. Pacifici, S. Martinaglia, and F. Mazzola, “The internet of things for intelligent transportation systems in real smart cities scenarios,” in 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 2019, pp. 128–132.
  3. S. B. Baker, W. Xiang, and I. Atkinson, “Internet of things for smart healthcare: Technologies, challenges, and opportunities,” IEEE Access, vol. 5, pp. 26 521–26 544, 2017.
  4. A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22–32, 2014.
  5. O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, and X. Wang, “Internet of things for the future of smart agriculture: A comprehensive survey of emerging technologies,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 718–752, 2021.
  6. P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, “Anomaly-based network intrusion detection: Techniques, systems and challenges,” Computers & Security, vol. 28, no. 1, pp. 18–28, 2009.
  7. M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study,” Journal of Information Security and Applications, vol. 50, p. 102419, 2020.
  8. F. E. Heba, A. Darwish, A. E. Hassanien, and A. Abraham, “Principle components analysis and support vector machine based intrusion detection system,” in 2010 10th International Conference on Intelligent Systems Design and Applications, 2010, pp. 363–367.
  9. I. Ahmad, M. Basheri, M. J. Iqbal, and A. Rahim, “Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection,” IEEE Access, vol. 6, pp. 33 789–33 795, 2018.
  10. R. Vinayakumar, K. P. Soman, and P. Poornachandran, “Applying convolutional neural network for network intrusion detection,” in 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017, pp. 1222–1228.
  11. C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion detection using recurrent neural networks,” IEEE Access, vol. 5, pp. 21 954–21 961, 2017.
  12. K. Al Jallad, M. Aljnidi, and M. S. Desouki, “Anomaly detection optimization using big data and deep learning to reduce false-positive,” Journal of Big Data, vol. 7, no. 1, pp. 1–12, 2020.
  13. W. Wang, C. Liang, Q. Chen, L. Tang, H. Yanikomeroglu, and T. Liu, “Distributed online anomaly detection for virtualized network slicing environment,” IEEE Transactions on Vehicular Technology, vol. 71, no. 11, pp. 12 235–12 249, 2022.
  14. G. Baldini and I. Amerini, “Online distributed denial of service (ddos) intrusion detection based on adaptive sliding window and morphological fractal dimension,” Computer Networks, vol. 210, p. 108923, 2022.
  15. M. A. Teixeira, M. Zolanvari, K. M. Khan, R. Jain, and N. Meskin, “Flow-based intrusion detection algorithm for supervisory control and data acquisition systems: A real-time approach,” IET Cyber-Physical Systems: Theory & Applications, vol. 6, no. 3, pp. 178–191, 2021.
  16. A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” 2019.
  17. F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, L. Cavallaro et al., “Tesseract: Eliminating experimental bias in malware classification across space and time,” in Proceedings of the 28th USENIX Security Symposium.   USENIX Association, 2019, pp. 729–746.
  18. S. T. Jan, Q. Hao, T. Hu, J. Pu, S. Oswal, G. Wang, and B. Viswanath, “Throwing darts in the dark? detecting bots with limited data using neural data augmentation,” in 2020 IEEE symposium on security and privacy (SP).   IEEE, 2020, pp. 1190–1206.
  19. N. Wang, Y. Chen, Y. Hu, W. Lou, and Y. T. Hou, “Feco: Boosting intrusion detection capability in iot networks via contrastive learning,” in IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, 2022, pp. 1409–1418.
  20. Y. Yue, X. Chen, Z. Han, X. Zeng, and Y. Zhu, “Contrastive learning enhanced intrusion detection,” IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp. 4232–4247, 2022.
  21. H. H. Pajouh, G. Dastghaibyfard, and S. Hashemi, “Two-tier network anomaly detection model: a machine learning approach,” Journal of Intelligent Information Systems, vol. 48, pp. 61–74, 2017.
  22. M. S. Habeeb and T. R. Babu, “Network intrusion detection system: A survey on artificial intelligence-based techniques,” Expert Systems, vol. 39, no. 9, p. e13066, 2022.
  23. S. Mohamed and R. Ejbali, “Deep sarsa-based reinforcement learning approach for anomaly network intrusion detection system,” International Journal of Information Security, vol. 22, no. 1, pp. 235–247, 2023.
  24. O. A. Wahab, “Intrusion detection in the iot under data and concept drifts: Online deep learning approach,” IEEE Internet of Things Journal, vol. 9, no. 20, pp. 19 706–19 716, 2022.
  25. L. Yang and A. Shami, “A lightweight concept drift detection and adaptation framework for iot data streams,” IEEE Internet of Things Magazine, vol. 4, no. 2, pp. 96–101, 2021.
  26. J. Xiao, M. Wang, B. Jiang, and J. Li, “A personalized recommendation system with combinational algorithm for online learning,” Journal of ambient intelligence and humanized computing, vol. 9, pp. 667–677, 2018.
  27. V. N. Dornadula and S. Geetha, “Credit card fraud detection using machine learning algorithms,” Procedia computer science, vol. 165, pp. 631–641, 2019.
  28. Q. Wang, Y. Guan, and X. Wang, “Svm-based spam filter with active and online learning.” in TREC, 2006.
  29. Z. Jiang, H. Zhu, B. Zhou, C. Lu, M. Sun, X. Ma, X. Fan, C. Wang, and L. Chen, “Crowdpatrol: A mobile crowdsensing framework for traffic violation hotspot patrolling,” IEEE Transactions on Mobile Computing, 2021.
  30. T. Chen, Q. Ling, Y. Shen, and G. B. Giannakis, “Heterogeneous online learning for “thing-adaptive” fog computing in iot,” IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4328–4341, 2018.
  31. S. Han, Q. Wu, H. Zhang, B. Qin, J. Hu, X. Shi, L. Liu, and X. Yin, “Log-based anomaly detection with robust feature extraction and online learning,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 2300–2311, 2021.
  32. D. Han, Z. Wang, W. Chen, K. Wang, R. Yu, S. Wang, H. Zhang, Z. Wang, M. Jin, J. Yang et al., “Anomaly detection in the open world: Normality shift detection, explanation, and adaptation.”
  33. E. Gyamfi and A. D. Jurcut, “Novel online network intrusion detection system for industrial iot based on oi-svdd and as-elm,” IEEE Internet of Things Journal, 2022.
  34. C. Xu, J. Shen, and X. Du, “A method of few-shot network intrusion detection based on meta-learning framework,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3540–3552, 2020.
  35. Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola, “What makes for good views for contrastive learning?” Advances in neural information processing systems, vol. 33, pp. 6827–6839, 2020.
  36. P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learning,” Advances in neural information processing systems, vol. 33, pp. 18 661–18 673, 2020.
  37. D. T. Hoffmann, N. Behrmann, J. Gall, T. Brox, and M. Noroozi, “Ranking info noise contrastive estimation: Boosting contrastive learning via ranked positives,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, 2022, pp. 897–905.
  38. B. Dai and D. Lin, “Contrastive learning for image captioning,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  39. P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive representation learning: A framework and review,” Ieee Access, vol. 8, pp. 193 907–193 934, 2020.
  40. R. Zhou, R. Zhao, and E. C. Ngai, “Human activity recognition from motion and acoustic sensors using contrastive learning,” in 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), 2023, pp. 1–4.
  41. M. Lopez-Martin, A. Sanchez-Esguevillas, J. I. Arribas, and B. Carro, “Contrastive learning over random fourier features for iot network intrusion detection,” IEEE Internet of Things Journal, vol. 10, no. 10, pp. 8505–8513, 2023.
  42. Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly detection on attributed networks via contrastive self-supervised learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 6, pp. 2378–2392, 2022.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub