Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trees and co-trees in planar 3-connected graphs An easier proof via Schnyder woods (2402.01230v3)

Published 2 Feb 2024 in cs.DM and math.CO

Abstract: Let $G$ be a 3-connected planar graph. Define the co-tree of a spanning tree $T$ of $G$ as the graph induced by the dual edges of $E(G)-E(T)$. The well-known cut-cycle duality implies that the co-tree is itself a tree. Let a $k$-tree be a spanning tree with maximum degree $k$. In 1970, Gr\"unbaum conjectured that every 3-connected planar graph contains a 3-tree whose co-tree is also a 3-tree. In 2014, Biedl showed that every such graph contains a 5-tree whose co-tree is a 5-tree. In this paper, we present an easier proof of Biedl's result

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com