Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orthogonal gamma-based expansion for the CIR's first passage time distribution (2402.00833v1)

Published 1 Feb 2024 in math.PR, cs.NA, math.NA, and stat.CO

Abstract: In this paper we analyze a method for approximating the first-passage time density and the corresponding distribution function for a CIR process. This approximation is obtained by truncating a series expansion involving the generalized Laguerre polynomials and the gamma probability density. The suggested approach involves a number of numerical issues which depend strongly on the coefficient of variation of the first passage time random variable. These issues are examined and solutions are proposed also involving the first passage time distribution function. Numerical results and comparisons with alternative approximation methods show the strengths and weaknesses of the proposed method. A general acceptance-rejection-like procedure, that makes use of the approximation, is presented. It allows the generation of first passage time data, even if its distribution is unknown.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com