Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ptychographic lensless coherent endomicroscopy through a flexible fiber bundle (2402.00148v1)

Published 31 Jan 2024 in physics.optics, eess.IV, and physics.med-ph

Abstract: Conventional fiber-bundle-based endoscopes allow minimally invasive imaging through flexible multi-core fiber (MCF) bundles by placing a miniature lens at the distal tip and using each core as an imaging pixel. In recent years, lensless imaging through MCFs was made possible by correcting the core-to-core phase distortions pre-measured in a calibration procedure. However, temporally varying wavefront distortions, for instance, due to dynamic fiber bending, pose a challenge for such approaches. Here, we demonstrate a coherent lensless imaging technique based on intensity-only measurements insensitive to core-to-core phase distortions. We leverage a ptychographic reconstruction algorithm to retrieve the phase and amplitude profiles of reflective objects placed at a distance from the fiber tip, using as input a set of diffracted intensity patterns reflected from the object when the illumination is scanned over the MCF cores. Our approach thus utilizes an acquisition process equivalent to confocal microendoscopy, only replacing the single detector with a camera.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” \JournalTitleNature methods 2, 941–950 (2005).
  2. G. Oh, E. Chung, and S. H. Yun, “Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging,” \JournalTitleOptical Fiber Technology 19, 760–771 (2013).
  3. N. Accanto, F. G. Blot, A. Lorca-Cámara, V. Zampini, F. Bui, C. Tourain, N. Badt, O. Katz, and V. Emiliani, “A flexible two-photon fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in freely moving mice,” \JournalTitleNeuron (2022).
  4. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” \JournalTitleOptics Communications 188, 267–273 (2001).
  5. L. Giniūnas, R. Juškaitis, and S. Shatalin, “Endoscope with optical sectioning capability,” \JournalTitleApplied optics 32, 2888–2890 (1993).
  6. J. Bertolotti and O. Katz, “Imaging in complex media,” \JournalTitleNature Physics 18, 1008–1017 (2022).
  7. J. Oh, C. Lee, G. Song, and M. Jang, “Review of endomicroscopic imaging with coherent manipulation of light through an ultrathin probe,” \JournalTitleJournal of Optical Microsystems 3, 011004 (2023).
  8. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” \JournalTitleNature communications 3, 1–9 (2012).
  9. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” \JournalTitlePhysical review letters 109, 203901 (2012).
  10. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” \JournalTitleNature Photonics 9, 529–535 (2015).
  11. A. M. Caravaca-Aguirre and R. Piestun, “Single multimode fiber endoscope,” \JournalTitleOptics express 25, 1656–1665 (2017).
  12. S. Li, S. A. Horsley, T. Tyc, T. Čižmár, and D. B. Phillips, “Memory effect assisted imaging through multimode optical fibres,” \JournalTitleNature Communications 12, 3751 (2021).
  13. A. J. Thompson, C. Paterson, M. A. Neil, C. Dunsby, and P. M. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” \JournalTitleOptics letters 36, 1707–1709 (2011).
  14. V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Katz, E. R. Andresen, and H. Rigneault, “Widefield lensless endoscopy with a multicore fiber,” \JournalTitleOptics letters 41, 4771–4774 (2016).
  15. G. S. Gordon, J. Joseph, T. Sawyer, A. J. Macfaden, C. Williams, T. D. Wilkinson, and S. E. Bohndiek, “Full-field quantitative phase and polarisation-resolved imaging through an optical fibre bundle,” \JournalTitleOptics express 27, 23929–23947 (2019).
  16. E. Scharf, J. Dremel, R. Kuschmierz, and J. Czarske, “Video-rate lensless endoscope with self-calibration using wavefront shaping,” \JournalTitleOptics letters 45, 3629–3632 (2020).
  17. Z. Wen, Z. Dong, Q. Deng, C. Pang, C. F. Kaminski, X. Xu, H. Yan, L. Wang, S. Liu, J. Tang et al., “Single multimode fibre for in vivo light-field-encoded endoscopic imaging,” \JournalTitleNature Photonics pp. 1–9 (2023).
  18. U. Weiss and O. Katz, “Two-photon lensless micro-endoscopy with in-situ wavefront correction,” \JournalTitleOptics express 26, 28808–28817 (2018).
  19. T. Yeminy and O. Katz, “Guidestar-free image-guided wavefront shaping,” \JournalTitleScience Advances 7, eabf5364 (2021).
  20. N. Badt and O. Katz, “Real-time holographic lensless micro-endoscopy through flexible fibers via fiber bundle distal holography,” \JournalTitleNature Communications 13, 1–9 (2022).
  21. W. Choi, M. Kang, J. H. Hong, O. Katz, B. Lee, G. H. Kim, Y. Choi, and W. Choi, “Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues,” \JournalTitleNature communications 13, 1–10 (2022).
  22. M. Kang, W. Choi, W. Choi, and Y. Choi, “Fourier holographic endoscopy for imaging continuously moving objects,” \JournalTitleOptics express 31, 11705–11716 (2023).
  23. O. Haim, J. Boger-Lombard, and O. Katz, “Image-guided computational holographic wavefront shaping,” \JournalTitlearXiv preprint arXiv:2305.12232 (2023).
  24. A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” \JournalTitleOptics express 24, 16835–16855 (2016).
  25. N. Stasio, C. Moser, and D. Psaltis, “Calibration-free imaging through a multicore fiber using speckle scanning microscopy,” \JournalTitleOptics letters 41, 3078–3081 (2016).
  26. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” \JournalTitleOptics letters 18, 565–567 (1993).
  27. A. Maiden, D. Johnson, and P. Li, “Further improvements to the ptychographical iterative engine,” \JournalTitleOptica 4, 736–745 (2017).
  28. M. Pham, A. Rana, J. Miao, and S. Osher, “Semi-implicit relaxed douglas-rachford algorithm (sdr) for ptychography,” \JournalTitleOptics express 27, 31246–31260 (2019).
  29. J. Miao and D. Sayre, “On possible extensions of x-ray crystallography through diffraction-pattern oversampling,” \JournalTitleActa Crystallographica Section A: Foundations of Crystallography 56, 596–605 (2000).
  30. J. Rodenburg and A. Maiden, “Ptychography,” \JournalTitleSpringer Handbook of Microscopy pp. 819–904 (2019).
  31. M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” \JournalTitleScientific reports 3, 1927 (2013).
  32. D. Claus and J. M. Rodenburg, “Diffraction-limited superresolution ptychography in the rayleigh–sommerfeld regime,” \JournalTitleJOSA A 36, A12–A19 (2019).
  33. H. Zhang, S. Jiang, J. Liao, J. Deng, J. Liu, Y. Zhang, and G. Zheng, “Near-field fourier ptychography: super-resolution phase retrieval via speckle illumination,” \JournalTitleOptics express 27, 7498–7512 (2019).
  34. W. Xu, H. Lin, H. Wang, and F. Zhang, “Super-resolution near-field ptychography,” \JournalTitleOptics express 28, 5164–5178 (2020).
  35. J. R. Fienup, “Phase retrieval algorithms: a comparison,” \JournalTitleApplied optics 21, 2758–2769 (1982).
  36. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” \JournalTitleOptics express 16, 21598–21607 (2008).
  37. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” \JournalTitleUltramicroscopy 109, 338–343 (2009).
  38. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” \JournalTitleOptics letters 38, 609–611 (2013).
  39. X. Huang, H. Yan, R. Harder, Y. Hwu, I. K. Robinson, and Y. S. Chu, “Optimization of overlap uniformness for ptychography,” \JournalTitleOptics express 22, 12634–12644 (2014).
  40. G. Weinberg, U. Weiss, and O. Katz, “Image scanning lensless fiber-bundle endomicroscopy,” \JournalTitleOptics express 31, 37050–37057 (2023).
  41. L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro fourier ptychographic microscopy,” \JournalTitleOptica 2, 904–911 (2015).
  42. P. Sidorenko and O. Cohen, “Single-shot ptychography,” \JournalTitleOptica 3, 9–14 (2016).
  43. J. Barolak, D. Goldberger, J. Squier, Y. Bellouard, C. Durfee, and D. Adams, “Wavelength-multiplexed single-shot ptychography,” \JournalTitleUltramicroscopy 233, 113418 (2022).
  44. A. Kappeler, S. Ghosh, J. Holloway, O. Cossairt, and A. Katsaggelos, “Ptychnet: Cnn based fourier ptychography,” in 2017 IEEE International Conference on Image Processing (ICIP), (IEEE, 2017), pp. 1712–1716.
  45. Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” \JournalTitleOptica 5, 1181–1190 (2018).
  46. T. Godden, R. Suman, M. Humphry, J. Rodenburg, and A. Maiden, “Ptychographic microscope for three-dimensional imaging,” \JournalTitleOptics express 22, 12513–12523 (2014).
  47. L. Tian and L. Waller, “3d intensity and phase imaging from light field measurements in an led array microscope,” \JournalTitleoptica 2, 104–111 (2015).
  48. P. Li and A. Maiden, “Multi-slice ptychographic tomography,” \JournalTitleScientific reports 8, 1–10 (2018).
  49. D. Marcuse, “Loss analysis of single-mode fiber splices,” \JournalTitleBell system technical journal 56, 703–718 (1977).
Citations (1)

Summary

We haven't generated a summary for this paper yet.