Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kronecker Product Feature Fusion for Convolutional Neural Network in Remote Sensing Scene Classification (2402.00036v1)

Published 8 Jan 2024 in cs.CV and cs.LG

Abstract: Remote Sensing Scene Classification is a challenging and valuable research topic, in which Convolutional Neural Network (CNN) has played a crucial role. CNN can extract hierarchical convolutional features from remote sensing imagery, and Feature Fusion of different layers can enhance CNN's performance. Two successful Feature Fusion methods, Add and Concat, are employed in certain state-of-the-art CNN algorithms. In this paper, we propose a novel Feature Fusion algorithm, which unifies the aforementioned methods using the Kronecker Product (KPFF), and we discuss the Backpropagation procedure associated with this algorithm. To validate the efficacy of the proposed method, a series of experiments are designed and conducted. The results demonstrate its effectiveness of enhancing CNN's accuracy in Remote sensing scene classification.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. K. Nogueira, O. A. Penatti, and J. A. Dos Santos, “Towards better exploiting convolutional neural networks for remote sensing scene classification,” Pattern Recognition, vol. 61, pp. 539–556, 2017.
  2. X. Lu, X. Zheng, and Y. Yuan, “Remote sensing scene classification by unsupervised representation learning,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 9, pp. 5148–5157, 2017.
  3. G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classification: Benchmark and state of the art,” Proceedings of the IEEE, vol. 105, no. 10, pp. 1865–1883, 2017.
  4. A. Sedaghat, M. Mokhtarzade, and H. Ebadi, “Uniform robust scale-invariant feature matching for optical remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4516–4527, 2011.
  5. C. I. Patel, D. Labana, S. Pandya, K. Modi, H. Ghayvat, and M. Awais, “Histogram of oriented gradient-based fusion of features for human action recognition in action video sequences,” Sensors, vol. 20, no. 24, p. 7299, 2020.
  6. X. Chen, G. Zhu, and M. Liu, “Bag-of-visual-words scene classifier for remote sensing image based on region covariance,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  7. R. M. Anwer, F. S. Khan, and J. Laaksonen, “Compact deep color features for remote sensing scene classification,” Neural Processing Letters, vol. 53, no. 2, pp. 1523–1544, 2021.
  8. W. Xia, L. Yan, and H. Xie, “A dsm-based co-occurrence matrix for semantic classification,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2020.
  9. T. Kattenborn, J. Leitloff, F. Schiefer, and S. Hinz, “Review on convolutional neural networks (cnn) in vegetation remote sensing,” ISPRS journal of photogrammetry and remote sensing, vol. 173, pp. 24–49, 2021.
  10. W. Lee, D. Sim, and S.-J. Oh, “A cnn-based high-accuracy registration for remote sensing images,” Remote Sensing, vol. 13, no. 8, p. 1482, 2021.
  11. X. Han, Y. Zhong, L. Cao, and L. Zhang, “Pre-trained alexnet architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification,” Remote Sensing, vol. 9, no. 8, p. 848, 2017.
  12. S. Chaib, H. Liu, Y. Gu, and H. Yao, “Deep feature fusion for vhr remote sensing scene classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 8, pp. 4775–4784, 2017.
  13. N. Devi and B. Borah, “Refining the features transferred from pre-trained inception architecture for aerial scene classification,” International Journal of Remote Sensing, vol. 40, no. 24, pp. 9260–9278, 2019.
  14. X. Zhang, S. Cheng, L. Wang, and H. Li, “Asymmetric cross-attention hierarchical network based on cnn and transformer for bitemporal remote sensing images change detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–15, 2023.
  15. J. Shi, Y. Wang, Z. Yu, G. Li, X. Hong, F. Wang, and Y. Gong, “Exploiting multi-scale parallel self-attention and local variation via dual-branch transformer-cnn structure for face super-resolution,” IEEE Transactions on Multimedia, 2023.
  16. Y. Ding, Z. Zhang, X. Zhao, D. Hong, W. Cai, C. Yu, N. Yang, and W. Cai, “Multi-feature fusion: Graph neural network and cnn combining for hyperspectral image classification,” Neurocomputing, vol. 501, pp. 246–257, 2022.
  17. C. Shi, X. Zhang, J. Sun, and L. Wang, “Remote sensing scene image classification based on dense fusion of multi-level features,” Remote Sensing, vol. 13, no. 21, p. 4379, 2021.
  18. S. Mei, K. Yan, M. Ma, X. Chen, S. Zhang, and Q. Du, “Remote sensing scene classification using sparse representation-based framework with deep feature fusion,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 5867–5878, 2021.
  19. K. Xu, H. Huang, Y. Li, and G. Shi, “Multilayer feature fusion network for scene classification in remote sensing,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 11, pp. 1894–1898, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Yinzhu Cheng (1 paper)

Summary

We haven't generated a summary for this paper yet.