Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Subseasonal Weather Forecast using Teleconnection-informed Transformers (2401.17870v2)

Published 31 Jan 2024 in cs.LG and cs.AI

Abstract: Subseasonal forecasting, which is pivotal for agriculture, water resource management, and early warning of disasters, faces challenges due to the chaotic nature of the atmosphere. Recent advances in ML have revolutionized weather forecasting by achieving competitive predictive skills to numerical models. However, training such foundation models requires thousands of GPU days, which causes substantial carbon emissions and limits their broader applicability. Moreover, ML models tend to fool the pixel-wise error scores by producing smoothed results which lack physical consistency and meteorological meaning. To deal with the aforementioned problems, we propose a teleconnection-informed transformer. Our architecture leverages the pretrained Pangu model to achieve good initial weights and integrates a teleconnection-informed temporal module to improve predictability in an extended temporal range. Remarkably, by adjusting 1.1% of the Pangu model's parameters, our method enhances predictability on four surface and five upper-level atmospheric variables at a two-week lead time. Furthermore, the teleconnection-filtered features improve the spatial granularity of outputs significantly, indicating their potential physical consistency. Our research underscores the importance of atmospheric and oceanic teleconnections in driving future weather conditions. Besides, it presents a resource-efficient pathway for researchers to leverage existing foundation models on versatile downstream tasks.

Summary

We haven't generated a summary for this paper yet.