Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient-Free Score-Based Sampling Methods with Ensembles (2401.17539v2)

Published 31 Jan 2024 in cs.LG and stat.CO

Abstract: Recent developments in generative modeling have utilized score-based methods coupled with stochastic differential equations to sample from complex probability distributions. However, these and other performant sampling methods generally require gradients of the target probability distribution, which can be unavailable or computationally prohibitive in many scientific and engineering applications. Here, we introduce ensembles within score-based sampling methods to develop gradient-free approximate sampling techniques that leverage the collective dynamics of particle ensembles to compute approximate reverse diffusion drifts. We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced F\"oLLMer sampler. We demonstrate the efficacy of the ensemble strategies through various examples, ranging from low- to medium-dimensionality sampling problems, including multi-modal and highly non-Gaussian probability distributions, and provide comparisons to traditional methods like the No-U-Turn Sampler. Additionally, we showcase these strategies in the context of a high-dimensional Bayesian inversion problem within the geophysical sciences. Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Importance sampling: Intrinsic dimension and computational cost. Statistical Science, pp.  405–431, 2017.
  2. Anderson, B. D. Reverse-time diffusion equation models. Stochastic Processes and their Applications, 12(3):313–326, 1982.
  3. Variational inference: A review for statisticians. Journal of the American statistical Association, 112(518):859–877, 2017. doi: https://doi.org/10.1080/01621459.2017.1285773.
  4. Probability flow solution of the Fokker–Planck equation. Machine Learning: Science and Technology, 4(3):035012, 2023. doi: 10.1088/2632-2153/ace2aa.
  5. Diffusion schrödinger bridge with applications to score-based generative modeling, 2023.
  6. JAX: composable transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.
  7. Recovering Stochastic Dynamics via Gaussian Schrödinger Bridges. arXiv, 2022. doi: 10.48550/arxiv.2202.05722.
  8. Ensemble kalman methods: A mean field perspective, 2022.
  9. Chada, N. K. A review of the EnKF for parameter estimation, 2022.
  10. Global Optimization via Schrödinger-Föllmer Diffusion. arXiv, 2021. doi: 10.48550/arxiv.2111.00402.
  11. Advances in importance sampling, 2022.
  12. Föllmer, H. An entropy approach to the time reversal of diffusion processes. In Stochastic Differential Systems Filtering and Control, pp. 156–163. Springer, 1985.
  13. Föllmer, H. Time reversal on wiener space. In Stochastic processes—mathematics and physics, pp. 119–129. Springer, 1986.
  14. Interacting langevin diffusions: Gradient structure and ensemble kalman sampler. SIAM Journal on Applied Dynamical Systems, 19(1):412–441, 2020. doi: https://doi.org/10.1137/19M1251655.
  15. Gardiner, C. W. et al. Handbook of stochastic methods, volume 3. springer Berlin, 1985.
  16. Geweke, J. Antithetic acceleration of monte carlo integration in bayesian inference. Journal of Econometrics, 38(1-2):73–89, 1988.
  17. An adaptive metropolis algorithm. Bernoulli, 7(2):223–242, 2001.
  18. Firedrake User Manual. Imperial College London and University of Oxford and Baylor University and University of Washington, first edition edition, 5 2023.
  19. Multiscale InSAR time series (MInTS) analysis of surface deformation. Journal of Geophysical Research: Solid Earth, 117(B2), 2012. doi: 10.1029/2011JB008731.
  20. The No-U-Turn sampler: adaptively setting path lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.
  21. Schrödinger-Föllmer sampler: sampling without ergodicity. arXiv preprint arXiv:2106.10880, 2021. doi: https://doi.org/10.48550/arXiv.2106.10880.
  22. Convergence Analysis of Schrödinger-Föllmer Sampler without Convexity. arXiv, 2021. doi: 10.48550/arxiv.2107.04766.
  23. The 2013 Mw 7.7 Balochistan Earthquake: Seismic Potential of an Accretionary Wedge. Bulletin of the Seismological Society of America, 104(2):1020–1030, 03 2014. ISSN 0037-1106. doi: 10.1785/0120130313.
  24. Elucidating the design space of diffusion-based generative models. Advances in Neural Information Processing Systems, 35:26565–26577, 2022.
  25. Kidger, P. On neural differential equations, 2022.
  26. Equinox: neural networks in jax via callable pytrees and filtered transformations, 2021.
  27. Bayesian inversion for finite fault earthquake source models I—theory and algorithm. Geophysical Journal International, 194(3):1701–1726, 06 2013. ISSN 0956-540X. doi: 10.1093/gji/ggt180.
  28. Iterative importance sampling algorithms for parameter estimation. SIAM Journal on Scientific Computing, 40(2):B329–B352, 2018. doi: https://doi.org/10.1137/16M1088417.
  29. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378:686–707, 2019. doi: 10.1016/j.jcp.2018.10.045.
  30. dcor: Distance correlation and energy statistics in Python. SoftwareX, 22, 2 2023. doi: 10.1016/j.softx.2023.101326.
  31. Reich, S. Data assimilation: The Schrödinger perspective. Acta Numerica, 28:635–711, 2019. ISSN 0962-4929. doi: 10.1017/s0962492919000011.
  32. Exponential convergence of langevin distributions and their discrete approximations. Bernoulli, pp.  341–363, 1996. doi: https://doi.org/10.2307/3318418.
  33. Convergence analysis of ensemble kalman inversion: The linear, noisy case, 2017.
  34. Schrödinger, E. Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique. In Annales de l’institut Henri Poincaré, volume 2, pp. 269–310, 1932.
  35. Generative modeling by estimating gradients of the data distribution. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
  36. Score-based generative modeling through stochastic differential equations, 2021.
  37. Energy statistics: A class of statistics based on distances. Journal of Statistical Planning and Inference, 143(8):1249–1272, 2013. ISSN 0378-3758. doi: https://doi.org/10.1016/j.jspi.2013.03.018.
  38. Tarantola, A. Inverse problem theory and methods for model parameter estimation. SIAM, 2005.
  39. Bayesian learning via neural Schrödinger–Föllmer flows. Statistics and Computing, 33(1):3, 2023. ISSN 0960-3174. doi: 10.1007/s11222-022-10172-5.
  40. Localized covariance estimation: A Bayesian perspective, 2023.
  41. Path integral sampler: a stochastic control approach for sampling, 2022.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com