Application of Neural Networks for the Reconstruction of Supernova Neutrino Energy Spectra Following Fast Neutrino Flavor Conversions (2401.17424v1)
Abstract: Neutrinos can undergo fast flavor conversions (FFCs) within extremely dense astrophysical environments such as core-collapse supernovae (CCSNe) and neutron star mergers (NSMs). In this study, we explore FFCs in a \emph{multi-energy} neutrino gas, revealing that when the FFC growth rate significantly exceeds that of the vacuum Hamiltonian, all neutrinos (regardless of energy) share a common survival probability dictated by the energy-integrated neutrino spectrum. We then employ physics-informed neural networks (PINNs) to predict the asymptotic outcomes of FFCs within such a multi-energy neutrino gas. These predictions are based on the first two moments of neutrino angular distributions for each energy bin, typically available in state-of-the-art CCSN and NSM simulations. Our PINNs achieve errors as low as $\lesssim6\%$ and $\lesssim 18\%$ for predicting the number of neutrinos in the electron channel and the relative absolute error in the neutrino moments, respectively.
- arXiv:2009.14157, doi:10.1038/s41586-020-03059-w.
- arXiv:1206.2503, doi:10.1146/annurev-nucl-102711-094901.
- F. Foucart, Neutrino transport in general relativistic neutron star merger simulations (9 2022). arXiv:2209.02538, doi:10.1007/s41115-023-00016-y.
- arXiv:2110.06218, doi:10.1007/s41114-021-00033-4.
- doi:10.1086/148549.
- doi:10.1086/181612.
- arXiv:1508.00785, doi:10.1393/ncr/i2016-10120-8.
- doi:10.1016/0370-2693(92)91887-F.
- doi:10.1016/0550-3213(93)90175-O.
- arXiv:astro-ph/0207281, doi:10.1103/PhysRevLett.89.191101.
- arXiv:astro-ph/0606616, doi:10.1103/PhysRevD.74.105014.
- arXiv:astro-ph/0608050, doi:10.1103/PhysRevLett.97.241101.
- arXiv:1001.2799, doi:10.1146/annurev.nucl.012809.104524.
- arXiv:2301.11814.
- arXiv:hep-ph/0503013, doi:10.1103/PhysRevD.72.045003.
- arXiv:1509.03323, doi:10.1103/PhysRevLett.116.081101.
- arXiv:1602.00698, doi:10.1088/1475-7516/2016/03/042.
- arXiv:1610.01612, doi:10.1103/PhysRevLett.118.021101.
- arXiv:1706.03360, doi:10.1103/PhysRevD.96.043016.
- arXiv:1701.06580, doi:10.1103/PhysRevD.95.103007.
- arXiv:1711.00477, doi:10.1103/PhysRevD.96.123015.
- arXiv:1712.07013, doi:10.1103/PhysRevD.98.043014.
- arXiv:1811.04215, doi:10.1016/j.physletb.2019.02.002.
- arXiv:1808.06618, doi:10.1103/PhysRevLett.122.091101.
- arXiv:1909.05225, doi:10.1016/j.physletb.2019.135088.
- arXiv:1812.06883, doi:10.1103/PhysRevD.100.043004.
- arXiv:1911.01983, doi:10.1103/PhysRevD.101.043016.
- arXiv:1906.08794, doi:10.1088/1475-7516/2019/09/002.
- arXiv:2009.04046, doi:10.1103/PhysRevD.102.103015.
- arXiv:1910.05682, doi:10.1103/PhysRevD.101.043009.
- arXiv:2101.01278, doi:10.1103/PhysRevD.103.063001.
- arXiv:2011.01948, doi:10.1146/annurev-nucl-102920-050505.
- arXiv:2109.00091, doi:10.1103/PhysRevD.105.043005.
- arXiv:2103.15267, doi:10.1103/PhysRevD.105.L101301.
- arXiv:2108.07281, doi:10.1103/PhysRevD.104.083025.
- arXiv:2109.14011, doi:10.1093/ptep/ptac082.
- arXiv:2109.14627, doi:10.1103/PhysRevLett.128.121102.
- arXiv:2104.05618, doi:10.1016/j.physletb.2021.136550.
- arXiv:2005.14204, doi:10.1103/PhysRevLett.125.251801.
- arXiv:2012.06594, doi:10.1103/PhysRevD.103.063033.
- arXiv:2012.08525, doi:10.1103/PhysRevD.103.063013.
- arXiv:1902.07467, doi:10.1103/PhysRevD.99.103011.
- arXiv:2110.08291, doi:10.3847/1538-4357/ac38a0.
- arXiv:2111.14880, doi:10.1088/1475-7516/2022/03/051.
- arXiv:2203.16559, doi:10.1103/PhysRevD.105.083024.
- arXiv:2209.11235, doi:10.1103/PhysRevD.106.103031.
- arXiv:2205.06272, doi:10.1103/PhysRevD.106.083011.
- arXiv:2211.09343, doi:10.1103/PhysRevD.107.103022.
- arXiv:2206.00676, doi:10.1103/PhysRevD.108.043006.
- arXiv:2207.09496, doi:10.1103/PhysRevD.106.123013.
- arXiv:2009.03337, doi:10.1103/PhysRevLett.126.061302.
- arXiv:2108.09886, doi:10.1103/PhysRevD.104.103003.
- arXiv:2101.02745, doi:10.1103/PhysRevD.103.083013.
- arXiv:2109.08631, doi:10.1103/PhysRevD.104.103023.
- arXiv:2110.00192, doi:10.1103/PhysRevLett.128.081102.
- arXiv:2206.04097, doi:10.1103/PhysRevLett.129.261101.
- arXiv:2301.11938, doi:10.1103/PhysRevD.107.103034.
- arXiv:2305.11207, doi:10.1103/PhysRevLett.131.061401.
- arXiv:2303.05906, doi:10.1103/PhysRevD.108.043007.
- arXiv:2303.12143, doi:10.1103/PhysRevD.107.123024.
- arXiv:2306.10108, doi:10.1103/PhysRevD.108.103014.
- arXiv:2307.16793.
- arXiv:2301.09650, doi:10.1103/PhysRevD.107.043024.
- arXiv:2309.00972.
- arXiv:2006.11414, doi:10.3847/1538-4357/abac5e.
- arXiv:2103.02616, doi:10.1103/PhysRevLett.126.251101.
- arXiv:2207.10680, doi:10.1103/PhysRevD.106.103003.
- arXiv:2005.00459, doi:10.1103/PhysRevD.102.063018.
- arXiv:2104.10532, doi:10.1103/PhysRevD.104.083035.
- arXiv:2205.05129, doi:10.1103/PhysRevD.106.103039.
- arXiv:2207.02214, doi:10.1016/j.physletb.2023.138210.
- arXiv:2205.06282, doi:10.1103/PhysRevD.106.043011.
- arXiv:2307.11129, doi:10.1103/PhysRevD.108.063003.
- arXiv:1104.3937, doi:10.1143/PTP.125.1255.
- arXiv:1209.2151, doi:10.1103/PhysRevD.87.103004.
- arXiv:2311.15656.
- arXiv:2312.06556.
- arXiv:2203.12866, doi:10.1016/j.cpc.2022.108588.
- arXiv:2206.08444, doi:10.1103/PhysRevD.106.083005.
- arXiv:2303.05560, doi:10.1103/PhysRevD.107.103006.
- arXiv:2310.03807.
- arXiv:1901.01546, doi:10.1103/PhysRevD.99.063005.
- doi:10.1109/MCSE.2007.55.
- doi:10.1109/MCSE.2011.37.
- doi:10.1038/s41592-019-0686-2.
- doi:10.1109/MCSE.2007.53. URL https://ipython.org