Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ROAMER: Robust Offroad Autonomy using Multimodal State Estimation with Radar Velocity Integration (2401.17404v1)

Published 30 Jan 2024 in cs.RO

Abstract: Reliable offroad autonomy requires low-latency, high-accuracy state estimates of pose as well as velocity, which remain viable throughout environments with sub-optimal operating conditions for the utilized perception modalities. As state estimation remains a single point of failure system in the majority of aspiring autonomous systems, failing to address the environmental degradation the perception sensors could potentially experience given the operating conditions, can be a mission-critical shortcoming. In this work, a method for integration of radar velocity information in a LiDAR-inertial odometry solution is proposed, enabling consistent estimation performance even with degraded LiDAR-inertial odometry. The proposed method utilizes the direct velocity-measuring capabilities of an Frequency Modulated Continuous Wave (FMCW) radar sensor to enhance the LiDAR-inertial smoother solution onboard the vehicle through integration of the forward velocity measurement into the graph-based smoother. This leads to increased robustness in the overall estimation solution, even in the absence of LiDAR data. This method was validated by hardware experiments conducted onboard an all-terrain vehicle traveling at high speed, ~12 m/s, in demanding offroad environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. D. Rodríguez-Martínez, M. Van Winnendael, and K. Yoshida, “High-speed mobility on planetary surfaces: A technical review,” Journal of Field Robotics, vol. 36, no. 8, pp. 1436–1455, 2019.
  2. L. Matthies, A. Kennett, L. Kerber, A. Fraeman, and R. C. Anderson, “Prospects for very long-range mars rover missions,” in 2022 IEEE Aerospace Conference (AERO).   IEEE, 2022, pp. 1–11.
  3. W. Wen, T. Pfeifer, X. Bai, and L.-T. Hsu, “Factor graph optimization for gnss/ins integration: A comparison with the extended kalman filter,” NAVIGATION: Journal of the Institute of Navigation, vol. 68, no. 2, pp. 315–331, 2021. [Online]. Available: https://navi.ion.org/content/68/2/315
  4. P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins: A research platform for visual-inertial estimation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 4666–4672.
  5. W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-inertial odometry,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2053–2073, 2022.
  6. S. Khattak, C. Papachristos, and K. Alexis, “Keyframe-based thermal–inertial odometry,” Journal of Field Robotics, vol. 37, no. 4, pp. 552–579, 2020. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21932
  7. C. Doer and G. Trommer, “x-rio: Radar inertial odometry with multiple radar sensors and yaw aiding,” Gyroscopy and Navigation, vol. 12, no. 4, pp. 329–339, 2021.
  8. J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and algorithms,” in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, pp. 163–168.
  9. J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time,” in Proceedings of Robotics: Science and Systems, Berkeley, USA, July 2014.
  10. S. Khattak, H. Nguyen, F. Mascarich, T. Dang, and K. Alexis, “Complementary multi–modal sensor fusion for resilient robot pose estimation in subterranean environments,” in 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 2020, pp. 1024–1029.
  11. T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and R. Daniela, “Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 5135–5142.
  12. T. Tuna, J. Nubert, Y. Nava, S. Khattak, and M. Hutter, “X-icp: Localizability-aware lidar registration for robust localization in extreme environments,” arXiv preprint arXiv:2211.16335, 2022.
  13. K. Ebadi, L. Bernreiter, H. Biggie, G. Catt, Y. Chang, A. Chatterjee, C. E. Denniston, S.-P. Deschênes, K. Harlow, S. Khattak et al., “Present and future of slam in extreme underground environments,” arXiv preprint arXiv:2208.01787, 2022.
  14. K. Burnett, Y. Wu, D. J. Yoon, A. P. Schoellig, and T. D. Barfoot, “Are we ready for radar to replace lidar in all-weather mapping and localization?” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 328–10 335, 2022.
  15. F. Sezgin, D. Vriesman, D. Steinhauser, R. Lugner, and T. Brandmeier, “Safe autonomous driving in adverse weather: Sensor evaluation and performance monitoring,” in 2023 IEEE Intelligent Vehicles Symposium (IV), 2023, pp. 1–6.
  16. K. Harlow, H. Jang, T. D. Barfoot, A. Kim, and C. Heckman, “A new wave in robotics: Survey on recent mmwave radar applications in robotics,” arXiv preprint arXiv:2305.01135, 2023.
  17. D. Kellner, M. Barjenbruch, J. Klappstein, J. Dickmann, and K. Dietmayer, “Instantaneous ego-motion estimation using Doppler radar,” in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).   IEEE, Oct. 2013, pp. 869–874.
  18. ——, “Instantaneous ego-motion estimation using multiple doppler radars,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 1592–1597.
  19. J. Michalczyk, R. Jung, and S. Weiss, “Tightly-coupled ekf-based radar-inertial odometry,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 12 336–12 343.
  20. A. Kramer and C. Heckman, “Radar-inertial state estimation and obstacle detection for micro-aerial vehicles in dense fog,” in Experimental Robotics, B. Siciliano, C. Laschi, and O. Khatib, Eds.   Cham: Springer International Publishing, 2021, pp. 3–16.
  21. K. Burnett, D. J. Yoon, A. P. Schoellig, and T. Barfoot, “Radar Odometry Combining Probabilistic Estimation and Unsupervised Feature Learning,” in Proceedings of Robotics: Science and Systems, Virtual, July 2021.
  22. Z. Hong, Y. Petillot, and S. Wang, “Radarslam: Radar based large-scale slam in all weathers,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 5164–5170.
  23. D. Adolfsson, M. Magnusson, A. Alhashimi, A. J. Lilienthal, and H. Andreasson, “Lidar-level localization with radar? the cfear approach to accurate, fast, and robust large-scale radar odometry in diverse environments,” IEEE Transactions on robotics, vol. 39, no. 2, pp. 1476–1495, 2022.
  24. C. Brommer, R. Jung, J. Steinbrener, and S. Weiss, “MaRS : A Modular and Robust Sensor-Fusion Framework,” 2020.
  25. J. Nubert, S. Khattak, and M. Hutter, “Graph-based multi-sensor fusion for consistent localization of autonomous construction robots,” in IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2022.
  26. S. Fakoorian, K. Otsu, S. Khattak, M. Palieri, and A.-a. Agha-mohammadi, “Rose: Robust state estimation via online covariance adaption,” in The International Symposium of Robotics Research.   Springer, 2022, pp. 452–467.
  27. P. Fritsche, S. Kueppers, G. Briese, and B. Wagner, “Fusing lidar and radar data to perform slam in harsh environments,” in Informatics in Control, Automation and Robotics: 13th International Conference, ICINCO 2016 Lisbon, Portugal, 29-31 July, 2016.   Springer, 2018, pp. 175–189.
  28. Y. S. Park, J. Kim, and A. Kim, “Radar localization and mapping for indoor disaster environments via multi-modal registration to prior lidar map,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 1307–1314.
  29. H. Yin, R. Chen, Y. Wang, and R. Xiong, “Rall: End-to-end radar localization on lidar map using differentiable measurement model,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 6737–6750, 2022.
  30. J. Solà, J. Deray, and D. Atchuthan, “A micro lie theory for state estimation in robotics,” 2021.
  31. C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold Preintegration for Real-Time Visual–Inertial Odometry,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1–21, Feb. 2017. [Online]. Available: https://ieeexplore.ieee.org/document/7557075/
  32. F. Dellaert and G. Contributors, “borglab/gtsam,” May 2022. [Online]. Available: https://github.com/borglab/gtsam)
Citations (3)

Summary

We haven't generated a summary for this paper yet.