Flocking by Turning Away (2401.17153v2)
Abstract: Flocking, as paradigmatically exemplified by birds, is the coherent collective motion of active agents. As originally conceived, flocking emerges through alignment interactions between the agents. Here, we report that flocking can also emerge through interactions that turn agents away from each other. Combining simulations, kinetic theory, and experiments, we demonstrate this mechanism of flocking in self-propelled Janus colloids with stronger repulsion on the front than on the rear. The polar state is stable because particles achieve a compromise between turning away from left and right neighbors. Unlike for alignment interactions, the emergence of polar order from turn-away interactions requires particle repulsion. At high concentration, repulsion produces flocking Wigner crystals. Whereas repulsion often leads to motility-induced phase separation of active particles, here it combines with turn-away torques to produce flocking. Therefore, our findings bridge the classes of aligning and non-aligning active matter. Our results could help to reconcile the observations that cells can flock despite turning away from each other via contact inhibition of locomotion. Overall, our work shows that flocking is a very robust phenomenon that arises even when the orientational interactions would seem to prevent it.
- Tamás Vicsek and Anna Zafeiris, “Collective motion,” Phys. Rep. 517, 71–140 (2012).
- Andrea Cavagna and Irene Giardina, “Bird Flocks as Condensed Matter,” Annu. Rev. Condens. Matter Phys. 5, 183–207 (2014).
- Fernando Peruani, Jörn Starruß, Vladimir Jakovljevic, Lotte Søgaard-Andersen, Andreas Deutsch, and Markus Bär, “Collective Motion and Nonequilibrium Cluster Formation in Colonies of Gliding Bacteria,” Phys. Rev. Lett. 108, 098102 (2012).
- Volker Schaller, Christoph Weber, Christine Semmrich, Erwin Frey, and Andreas R Bausch, “Polar patterns of driven filaments,” Nature 467, 73–7 (2010).
- Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet, “Novel Type of Phase Transition in a System of Self-Driven Particles,” Phys. Rev. Lett. 75, 1226–1229 (1995).
- John Toner and Yuhai Tu, “Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together,” Phys. Rev. Lett. 75, 4326–4329 (1995).
- Antoine Bricard, Jean-Baptiste Caussin, Nicolas Desreumaux, Olivier Dauchot, and Denis Bartolo, “Emergence of macroscopic directed motion in populations of motile colloids,” Nature 503, 95–98 (2013).
- Andreas Kaiser, Alexey Snezhko, and Igor S. Aranson, “Flocking ferromagnetic colloids,” Sci. Adv. 3, e1601469 (2017).
- Delphine Geyer, Alexandre Morin, and Denis Bartolo, “Sounds and hydrodynamics of polar active fluids,” Nat. Mater. 17, 789–793 (2018).
- M. Reza Shaebani, Adam Wysocki, Roland G. Winkler, Gerhard Gompper, and Heiko Rieger, “Computational models for active matter,” Nat. Rev. Phys. 2, 181–199 (2020).
- Markus Bär, Robert Großmann, Sebastian Heidenreich, and Fernando Peruani, “Self-Propelled Rods: Insights and Perspectives for Active Matter,” Annu. Rev. Condens. Matter Phys. 11, 441–466 (2020).
- Hugues Chaté, “Dry Aligning Dilute Active Matter,” Annu. Rev. Condens. Matter Phys. 11, 189–212 (2020).
- B. Szabó, G. Szöllösi, B. Gönci, Zs. Jurányi, D. Selmeczi, and Tamás Vicsek, “Phase transition in the collective migration of tissue cells: Experiment and model,” Phys. Rev. E 74, 061908 (2006).
- Eliseo Ferrante, Ali Emre Turgut, Marco Dorigo, and Cristián Huepe, “Elasticity-Based Mechanism for the Collective Motion of Self-Propelled Particles with Springlike Interactions: A Model System for Natural and Artificial Swarms,” Phys. Rev. Lett. 111, 268302 (2013).
- D. Grossman, I. S. Aranson, and E. Ben Jacob, “Emergence of agent swarm migration and vortex formation through inelastic collisions,” New J. Phys. 10, 023036 (2008).
- Julien Deseigne, Olivier Dauchot, and Hugues Chaté, “Collective Motion of Vibrated Polar Disks,” Phys. Rev. Lett. 105, 098001 (2010).
- Pawel Romanczuk, Iain D. Couzin, and Lutz Schimansky-Geier, “Collective Motion due to Individual Escape and Pursuit Response,” Phys. Rev. Lett. 102, 010602 (2009).
- R Großmann, L Schimansky-Geier, and P Romanczuk, “Self-propelled particles with selective attraction–repulsion interaction: from microscopic dynamics to coarse-grained theories,” New J. Phys. 15, 085014 (2013).
- Daniel Strömbom, “Collective motion from local attraction,” J. Theor. Biol. 283, 145–151 (2011).
- Lucas Barberis and Fernando Peruani, “Large-Scale Patterns in a Minimal Cognitive Flocking Model: Incidental Leaders, Nematic Patterns, and Aggregates,” Phys. Rev. Lett. 117, 248001 (2016).
- Lucas Barberis and Fernando Peruani, “Phase separation and emergence of collective motion in a one-dimensional system of active particles,” J. Chem. Phys. 150, 144905 (2019).
- Robert Großmann, Igor S. Aranson, and Fernando Peruani, “A particle-field approach bridges phase separation and collective motion in active matter,” Nat. Commun. 11, 5365 (2020).
- Miloš Knežević, Till Welker, and Holger Stark, “Collective motion of active particles exhibiting non-reciprocal orientational interactions,” Sci. Rep. 12, 19437 (2022).
- Lu Chen, Kyle J. Welch, Premkumar Leishangthem, Dipanjan Ghosh, Bokai Zhang, Ting-Pi Sun, Josh Klukas, Zhanchun Tu, Xiang Cheng, and Xinliang Xu, “Molecular chaos in dense active systems,” (2023), arXiv:2302.10525 .
- Mathias Casiulis and Dov Levine, “Emergent synchronization and flocking in purely repulsive self-navigating particles,” Phys. Rev. E 106, 044611 (2022).
- L. Caprini and H. Löwen, “Flocking without Alignment Interactions in Attractive Active Brownian Particles,” Phys. Rev. Lett. 130, 148202 (2023).
- Rüdiger Kürsten, Jakob Mihatsch, and Thomas Ihle, “Flocking in Binary Mixtures of Anti-aligning Self-propelled Particles,” (2023), arXiv:2304.05476 .
- R. A. Kopp and S. H. L. Klapp, “Spontaneous velocity alignment of Brownian particles with feedback-induced propulsion,” Europhys. Lett. 143, 17002 (2023).
- Yael Katz, Kolbjørn Tunstrøm, Christos C. Ioannou, Cristián Huepe, and Iain D. Couzin, “Inferring the structure and dynamics of interactions in schooling fish,” Proc. Natl. Acad. Sci. U. S. A. 108, 18720–18725 (2011).
- Jitesh Jhawar, Richard G. Morris, U. R. Amith-Kumar, M. Danny Raj, Tim Rogers, Harikrishnan Rajendran, and Vishwesha Guttal, “Noise-induced schooling of fish,” Nat. Phys. 16, 488–493 (2020).
- Adam T. Hayes and Parsa Dormiani-Tabatabaei, “Self-organized flocking with agent failure: Off-line optimization and demonstration with real robots,” Proc. - IEEE Int. Conf. Robot. Autom. 4, 3900–3905 (2002).
- Roberto Mayor and Carlos Carmona-Fontaine, “Keeping in touch with contact inhibition of locomotion,” Trends Cell Biol. 20, 319–328 (2010).
- Brian Stramer and Roberto Mayor, “Mechanisms and in vivo functions of contact inhibition of locomotion,” Nat. Rev. Mol. Cell Biol. 18, 43–55 (2017).
- Ricard Alert and Xavier Trepat, “Physical Models of Collective Cell Migration,” Annu. Rev. Condens. Matter Phys. 11, 77–101 (2020).
- Bart Smeets, Ricard Alert, Jiří Pešek, Ignacio Pagonabarraga, Herman Ramon, and Romaric Vincent, “Emergent structures and dynamics of cell colonies by contact inhibition of locomotion,” Proc. Natl. Acad. Sci. U. S. A. 113, 14621–14626 (2016).
- Tetsuya Hiraiwa, “Dynamic Self-Organization of Idealized Migrating Cells by Contact Communication,” Phys. Rev. Lett. 125, 268104 (2020).
- Ravi A Desai, Smitha B Gopal, Sophia Chen, and Christopher S Chen, “Contact inhibition of locomotion probabilities drive solitary versus collective cell migration,” J. R. Soc. Interface 10, 20130717 (2013).
- Chiara Malinverno, Salvatore Corallino, Fabio Giavazzi, Martin Bergert, Qingsen Li, Marco Leoni, Andrea Disanza, Emanuela Frittoli, Amanda Oldani, Emanuele Martini, Tobias Lendenmann, Gianluca Deflorian, Galina V. Beznoussenko, Dimos Poulikakos, Kok Haur Ong, Marina Uroz, Xavier Trepat, Dario Parazzoli, Paolo Maiuri, Weimiao Yu, Aldo Ferrari, Roberto Cerbino, and Giorgio Scita, “Endocytic reawakening of motility in jammed epithelia,” Nat. Mater. 16, 587–596 (2017).
- Shreyansh Jain, Victoire M. L. Cachoux, Gautham H. N. S. Narayana, Simon de Beco, Joseph D’Alessandro, Victor Cellerin, Tianchi Chen, Mélina L. Heuzé, Philippe Marcq, René-Marc Mège, Alexandre J. Kabla, Chwee Teck Lim, and Benoit Ladoux, “The role of single-cell mechanical behaviour and polarity in driving collective cell migration,” Nat. Phys. 16, 802–809 (2020).
- Tom Brandstätter, David B. Brückner, Yu Long Han, Ricard Alert, Ming Guo, and Chase P. Broedersz, “Curvature induces active velocity waves in rotating spherical tissues,” Nat. Commun. 14, 1643 (2023).
- Tzer Han Tan, Aboutaleb Amiri, Irene Seijo-Barandiarán, Michael F Staddon, Anne Materne, Sandra Tomas, Charlie Duclut, Marko Popović, Anne Grapin-Botton, and Frank Jülicher, “Emergent chirality in active solid rotation of pancreas spheres,” bioRxiv , 2022.09.29.510101 (2022a).
- M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, Madan Rao, and R. Aditi Simha, “Hydrodynamics of soft active matter,” Rev. Mod. Phys. 85, 1143–1189 (2013).
- Michael E. Cates and Julien Tailleur, “Motility-Induced Phase Separation,” Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).
- L Huber, R Suzuki, T Krüger, E Frey, and A R Bausch, “Emergence of coexisting ordered states in active matter systems,” Science 361, 255–258 (2018).
- Jie Zhang, Ricard Alert, Jing Yan, Ned S. Wingreen, and Steve Granick, “Active phase separation by turning towards regions of higher density,” Nat. Phys. 17, 961–967 (2021).
- Jing Yan, Ming Han, Jie Zhang, Cong Xu, Erik Luijten, and Steve Granick, “Reconfiguring active particles by electrostatic imbalance,” Nat. Mater. 15, 1095–1099 (2016).
- Marjolein N. van der Linden, Lachlan C. Alexander, Dirk G. A. L. Aarts, and Olivier Dauchot, “Interrupted Motility Induced Phase Separation in Aligning Active Colloids,” Phys. Rev. Lett. 123, 098001 (2019).
- Junichiro Iwasawa, Daiki Nishiguchi, and Masaki Sano, “Algebraic correlations and anomalous fluctuations in ordered flocks of Janus particles fueled by an AC electric field,” Phys. Rev. Res. 3, 043104 (2021).
- Sumit Gangwal, Olivier J. Cayre, Martin Z. Bazant, and Orlin D. Velev, “Induced-Charge Electrophoresis of Metallodielectric Particles,” Phys. Rev. Lett. 100, 058302 (2008).
- Jeffrey L. Moran and Jonathan D. Posner, “Phoretic Self-Propulsion,” Annu. Rev. Fluid Mech. 49, 511–540 (2017).
- Kyle J.M. Bishop, Sibani Lisa Biswal, and Bhuvnesh Bharti, “Active Colloids as Models, Materials, and Machines,” Annu. Rev. Chem. Biomol. Eng. 14, 1–30 (2023).
- Guillaume Grégoire, Hugues Chaté, and Yuhai Tu, “Moving and staying together without a leader,” Phys. D Nonlinear Phenom. 181, 157–170 (2003).
- Andreas M Menzel and Hartmut Löwen, “Traveling and resting crystals in active systems,” Phys. Rev. Lett. 110, 055702 (2013).
- E. Wigner, “On the Interaction of Electrons in Metals,” Phys. Rev. 46, 1002 (1934).
- Marine Le Blay and Alexandre Morin, “Repulsive torques alone trigger crystallization of constant speed active particles,” Soft Matter 18, 3120–3124 (2022).
- B. Halperin and David Nelson, “Theory of Two-Dimensional Melting,” Phys. Rev. Lett. 41, 121–124 (1978).
- Berend van der Meer, Laura Filion, and Marjolein Dijkstra, “Fabricating large two-dimensional single colloidal crystals by doping with active particles,” Soft Matter 12, 3406–3411 (2016).
- Sophie Ramananarivo, Etienne Ducrot, and Jeremie Palacci, “Activity-controlled annealing of colloidal monolayers,” Nat. Commun. 10, 3380 (2019).
- Elena Sesé-Sansa, Demian Levis, and Ignacio Pagonabarraga, “Microscopic field theory for structure formation in systems of self-propelled particles with generic torques,” J. Chem. Phys. 157, 224905 (2022).
- Khanh-Dang Nguyen Thu Lam, Michael Schindler, and Olivier Dauchot, “Polar active liquids: a universal classification rooted in nonconservation of momentum,” J. Stat. Mech. Theory Exp. 2015, P10017 (2015).
- Delphine Geyer, David Martin, Julien Tailleur, and Denis Bartolo, “Freezing a Flock: Motility-Induced Phase Separation in Polar Active Liquids,” Phys. Rev. X 9, 031043 (2019).
- Qianhong Yang, Maoqiang Jiang, Francesco Picano, and Lailai Zhu, “Shaping active matter: from crystalline solids to active turbulence,” (2023), 10.21203/RS.3.RS-2885949/V1.
- Gabriel S Redner, Michael F Hagan, and Aparna Baskaran, “Structure and Dynamics of a Phase-Separating Active Colloidal Fluid,” Phys. Rev. Lett. 110, 055701 (2013).
- Jeremie Palacci, Stefano Sacanna, Asher Preska Steinberg, David J Pine, and Paul M Chaikin, “Living crystals of light-activated colloidal surfers,” Science 339, 936–40 (2013).
- Ahmad K. Omar, Katherine Klymko, Trevor GrandPre, and Phillip L. Geissler, “Phase Diagram of Active Brownian Spheres: Crystallization and the Metastability of Motility-Induced Phase Separation,” Phys. Rev. Lett. 126, 188002 (2021).
- Rajesh Singh and R. Adhikari, “Universal Hydrodynamic Mechanisms for Crystallization in Active Colloidal Suspensions,” Phys. Rev. Lett. 117, 228002 (2016).
- Shashi Thutupalli, Delphine Geyer, Rajesh Singh, Ronojoy Adhikari, and Howard A Stone, “Flow-induced phase separation of active particles is controlled by boundary conditions,” Proc. Natl. Acad. Sci. U. S. A. 115, 5403–5408 (2018).
- Ephraim S. Bililign, Florencio Balboa Usabiaga, Yehuda A. Ganan, Alexis Poncet, Vishal Soni, Sofia Magkiriadou, Michael J. Shelley, Denis Bartolo, and William T.M. Irvine, “Motile dislocations knead odd crystals into whorls,” Nat. Phys. 18, 212–218 (2022).
- Tzer Han Tan, Alexander Mietke, Junang Li, Yuchao Chen, Hugh Higinbotham, Peter J. Foster, Shreyas Gokhale, Jörn Dunkel, and Nikta Fakhri, “Odd dynamics of living chiral crystals,” Nature 607, 287–293 (2022b).
- Julian Bialké, Thomas Speck, and Hartmut Löwen, “Crystallization in a Dense Suspension of Self-Propelled Particles,” Phys. Rev. Lett. 108, 168301 (2012).
- G. Briand and O. Dauchot, “Crystallization of Self-Propelled Hard Discs,” Phys. Rev. Lett. 117, 098004 (2016).
- Michael P Allen and Dominic J Tildesley, Computer Simulation of Liquids, 2nd ed. (Oxford University Press, Oxford, 2017).
- Mehran Kardar, Statistical Physics of Particles (Cambridge University Press, Cambridge, 2007).