Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Realization of unitary representations of the Lorentz group on de Sitter space (2401.17140v1)

Published 30 Jan 2024 in math-ph, math.MP, and math.OA

Abstract: This paper builds on our previous work in which we showed that, for all connected semisimple linear Lie groups $G$ acting on a non-compactly causal symmetric space $M = G/H$, every irreducible unitary representation of $G$ can be realized by boundary value maps of holomorphic extensions in distributional sections of a vector bundle over $M$. In the present paper we discuss this procedure for the connected Lorentz group $G = SO_{1,d}(R)e$ acting on de Sitter space $M = dSd$. We show in particular that the previously constructed nets of real subspaces satisfy the locality condition. Following ideas of Bros and Moschella from the 1990's, we show that the matrix-valued spherical function that corresponds to our extension process extends analytically to a large domain $G_C{cut}$ in the complexified group $G_C = \SO{1,d}(C)$, which for $d = 1$ specializes to the complex cut plane $C \setminus (-\infinity, 0]$. A number of special situations is discussed specifically: (a) The case $d = 1$, which closely corresponds to standard subspaces in Hilbert spaces, (b) the case of scalar-valued functions, which for $d > 2$ is the case of spherical representations, for which we also describe the jump singularities of the holomorphic extensions on the cut in de Sitter space, (c) the case $d = 3$, where we obtain rather explicit formulas for the matrix-valued spherical functions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com