Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Semantic Communication and Target Sensing for 6G Communication System (2401.17108v1)

Published 30 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: This paper investigates the secure resource allocation for a downlink integrated sensing and communication system with multiple legal users and potential eavesdroppers. In the considered model, the base station (BS) simultaneously transmits sensing and communication signals through beamforming design, where the sensing signals can be viewed as artificial noise to enhance the security of communication signals. To further enhance the security in the semantic layer, the semantic information is extracted from the original information before transmission. The user side can only successfully recover the received information with the help of the knowledge base shared with the BS, which is stored in advance. Our aim is to maximize the sum semantic secrecy rate of all users while maintaining the minimum quality of service for each user and guaranteeing overall sensing performance. To solve this sum semantic secrecy rate maximization problem, an iterative algorithm is proposed using the alternating optimization method. The simulation results demonstrate the superiority of the proposed algorithm in terms of secure semantic communication and reliable detection.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. G. Zhu and K. Huang, “Mimo over-the-air computation for high-mobility multimodal sensing,” IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6089–6103, 2019.
  2. Y. Zhang, J. Hou, V. Towhidlou, and M. R. Shikh-Bahaei, “A neural network prediction-based adaptive mode selection scheme in full-duplex cognitive networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 3, pp. 540–553, 2019.
  3. K. Nehra and M. Shikh-Bahaei, “Spectral efficiency of adaptive mqam/ofdm systems with cfo over fading channels,” IEEE transactions on vehicular technology, vol. 60, no. 3, pp. 1240–1247, 2010.
  4. H. Bobarshad and M. Shikh-Bahaei, “M/m/1 queuing model for adaptive cross-layer error protection in wlans,” in 2009 IEEE Wireless Communications and Networking Conference, pp. 1–6, IEEE, 2009.
  5. Y. Zhang, Q. Wu, and M. R. Shikh-Bahaei, “On ensemble learning-based secure fusion strategy for robust cooperative sensing in full-duplex cognitive radio networks,” IEEE Transactions on Communications, vol. 68, no. 10, pp. 6086–6100, 2020.
  6. W. Ding and M. Shikh-Bahaei, “A partial compress-and-forward strategy for relay-assisted wireless networks based on rateless coding,” IEEE Transactions on Vehicular Technology, 2023.
  7. Y. Yang and M. Shikh-Bahaei, “Secure integrated sensing and communication for conventional and isac-dedicated receivers,” in 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6, 2023.
  8. W. Ding, Z. Yang, M. Chen, J. Hou, and M. Shikh-Bahaei, “Resource allocation for uav assisted wireless networks with qos constraints,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–7, 2020.
  9. W. Ding and M. Shikh-Bahaei, “Optimized asymmetric feedback detection for rate-adaptive harq with unreliable feedback,” in 2021 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, 2021.
  10. W. Ding and M. Shikh-Bahaei, “An efficient relay selection scheme for relay-assisted harq,” in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2023.
  11. W. Ding and M. Shikh-Bahaei, “Harq delay minimization of 5g wireless network with imperfect feedback,” in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2023.
  12. F. Liu, C. Masouros, A. Li, and T. Ratnarajah, “Robust mimo beamforming for cellular and radar coexistence,” IEEE Wireless Communications Letters, vol. 6, no. 3, pp. 374–377, 2017.
  13. F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems: Optimal waveform design,” IEEE Transactions on Signal Processing, vol. 66, no. 16, pp. 4264–4279, 2018.
  14. Z. Qin, X. Tao, J. Lu, W. Tong, and G. Y. Li, “Semantic communications: Principles and challenges,” arXiv preprint arXiv:2201.01389, 2021.
  15. W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah, “Edge learning for b5g networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing,” IEEE journal of selected topics in signal processing, vol. 17, no. 1, pp. 9–39, 2023.
  16. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 5–41, 2022.
  17. Z. Chen, Z. Zhang, and Z. Yang, “Big ai models for 6g wireless networks: Opportunities, challenges, and research directions,” arXiv preprint arXiv:2308.06250, 2023.
  18. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021.
  19. M. Zhang, Y. Li, Z. Zhang, G. Zhu, and C. Zhong, “Wireless image transmission with semantic and security awareness,” IEEE Wireless Communications Letters, vol. 12, no. 8, pp. 1389–1393, 2023.
  20. Z. Lyu, G. Zhu, J. Xu, B. Ai, and S. Cui, “Semantic communications for image recovery and classification via deep joint source and channel coding,” arXiv preprint arXiv:2304.02317, 2023.
  21. Z. Yang, M. Chen, G. Li, Y. Yang, and Z. Zhang, “Secure semantic communications: Fundamentals and challenges,” arXiv preprint arXiv:2301.01421, 2023.
  22. Y. Yang and M. Shikh-Bahaei, “Deep reinforcement learning for secure communication,” in 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), pp. 1–5, 2022.
  23. X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint transmit beamforming for multiuser mimo communications and mimo radar,” IEEE Transactions on Signal Processing, vol. 68, pp. 3929–3944, 2020.
  24. D. R. Fuhrmann and G. San Antonio, “Transmit beamforming for mimo radar systems using signal cross-correlation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no. 1, pp. 171–186, 2008.
  25. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pp. 311–318, 2002.
  26. Z. Yang, M. Chen, Z. Zhang, and C. Huang, “Energy efficient semantic communication over wireless networks with rate splitting,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 5, pp. 1484–1495, 2023.
  27. Z. Zhao, Z. Yang, Q.-V. Pham, Q. Yang, and Z. Zhang, “Semantic communication with probability graph: A joint communication and computation design,” in 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), pp. 1–5, IEEE, 2023.
  28. K.-Y. Wang, A. M.-C. So, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Outage constrained robust transmit optimization for multiuser miso downlinks: Tractable approximations by conic optimization,” IEEE Transactions on Signal Processing, vol. 62, no. 21, pp. 5690–5705, 2014.
  29. N. Su, F. Liu, and C. Masouros, “Secure radar-communication systems with malicious targets: Integrating radar, communications and jamming functionalities,” IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 83–95, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.