Parallelly Sliced Optimal Transport on Spheres and on the Rotation Group (2401.16896v2)
Abstract: Sliced optimal transport, which is basically a Radon transform followed by one-dimensional optimal transport, became popular in various applications due to its efficient computation. In this paper, we deal with sliced optimal transport on the sphere $\mathbb{S}{d-1}$ and on the rotation group SO(3). We propose a parallel slicing procedure of the sphere which requires again only optimal transforms on the line. We analyze the properties of the corresponding parallelly sliced optimal transport, which provides in particular a rotationally invariant metric on the spherical probability measures. For SO(3), we introduce a new two-dimensional Radon transform and develop its singular value decomposition. Based on this, we propose a sliced optimal transport on SO(3). As Wasserstein distances were extensively used in barycenter computations, we derive algorithms to compute the barycenters with respect to our new sliced Wasserstein distances and provide synthetic numerical examples on the 2-sphere that demonstrate their behavior for both the free and fixed support setting of discrete spherical measures. In terms of computational speed, they outperform the existing methods for semicircular slicing as well as the regularized Wasserstein barycenters.
- Handbook of Mathematical Functions. National Bureau of Standards, Washington, DC, USA, 1972.
- Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2008. doi:10.1515/9781400830244.
- M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM J. Math. Anal., 43(2):904–924, 2011. doi:10.1137/100805741.
- Neural Wasserstein gradient flows for maximum mean discrepancies with Riesz kernels. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning, pages 664–690. PMLR, 2023. URL: https://proceedings.mlr.press/v202/altekruger23a.html.
- Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2005. doi:10.1007/b137080.
- K. Atkinson and W. Han. Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Springer, Heidelberg, 2012. doi:10.1007/978-3-642-25983-8.
- F. A. Ba and M. Quellmalz. Accelerating the Sinkhorn algorithm for sparse multi-marginal optimal transport via fast Fourier transforms. Algorithms, 15(9):311, 2022. doi:10.3390/a15090311.
- On a linear Gromov–Wasserstein distance. IEEE Trans. Image Process., 31:7292–7305, 2022. doi:10.1109/TIP.2022.3221286.
- Unbalanced multi-marginal optimal transport. J. Math. Imaging. Vis., 2022. doi:10.1007/s10851-022-01126-7.
- Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten. Publ. Res. Inst. Math. Sci., 4:201–268, 1968. doi:10.2977/prims/1195194875.
- Synchronizing probability measures on rotations via optimal transport. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 1566–1576, 2020. doi:10.1109/CVPR42600.2020.00164.
- J. Boman and F. Lindskog. Support theorems for the Radon transform and Cramèr–Wold theorem. J. Theor. Probab., 22:683–710, 2009. doi:10.1007/s10959-008-0151-0.
- C. Bonet. Leveraging Optimal Transport via Projections on Subspaces for Machine Learning Applications. PhD thesis, Université Bretagne Sud, 2023.
- Spherical sliced-Wasserstein. In International Conference on Learning Representations, 2023. URL: https://openreview.net/forum?id=jXQ0ipgMdU.
- Hyperbolic sliced-Wasserstein via geodesic and horospherical projections. In T. Doster, T. Emerson, H. Kvinge, N. Miolane, M. Papillon, B. Rieck, and S. Sanborn, editors, Proceedings of 2nd Annual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML), pages 334–370. PMLR, 2023. URL: https://proceedings.mlr.press/v221/bonet23a.html.
- Sliced and Radon Wasserstein barycenters of measures. J. Math. Imaging Vis., 51(1):22–45, 2015. doi:10.1007/s10851-014-0506-3.
- N. Bonnotte. Unidimensional and Evolution Methods for Optimal Transportation. PhD thesis, Université Paris Sud, 2013.
- S. Borgwardt. An LP-based, strongly-polynomial 2-approximation algorithm for sparse Wasserstein barycenters. Oper. Res. Int. J., 22:1511–1551, 2022. doi:10.1007/s12351-020-00589-z.
- L. Condat. Fast projection onto the simplex and the l1subscript𝑙1l_{1}italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ball. Math. Program., 158(1–2):575–585, 2016. doi:10.1007/s10107-015-0946-6.
- Spherical optimal transportation. Computer-Aided Design, 115:181––193, 2019. doi:0.1016/j.cad.2019.05.024.
- M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013. URL: https://papers.nips.cc/paper_files/paper/2013/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html.
- F. Dai and Y. Xu. Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics. Springer, New York, 2013. doi:10.1007/978-1-4614-6660-4.
- Fast transport optimization for Monge costs on the circle. SIAM J. Appl. Math., 70(7):2239–2258, 2010. doi:10.1137/090772708.
- Curve based approximation of measures on manifolds by discrepancy minimization. Foundations of Computational Mathematics, 21(6):1595–1642, 2021. doi:10.1007/s10208-021-09491-2.
- Regularization of Inverse Problems, volume 375 of Mathematics and Its Applications. Kluwer, Dodrecht, 1996.
- Variational Wasserstein gradient flow. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, pages 6185–6215. PMLR, 2022.
- POT: Python optimal transport. J. Mach. Learn. Res., 22(78):1–8, 2021. URL: http://jmlr.org/papers/v22/20-451.html.
- P. Funk. Über Flächen mit lauter geschlossenen geodätischen Linien. Math. Ann., 74(2):278–300, 1913. doi:10.1007/BF01456044.
- Isometric rigidity of Wasserstein spaces over Euclidean spheres, 2023. arXiv:2308.05065.
- H. Groemer. On a spherical integral transformation and sections of star bodies. Monatsh. Math., 126(2):117–124, 1998. doi:10.1007/BF01473582.
- Kernel density estimation with spherical data. Biometrika, 74(4):751–62, 1987. doi:10.1093/biomet/74.4.751.
- B. Hamfeldt and A. Turnquist. A convergence framework for optimal transport on the sphere. Numer. Math., 151:627––657, 2022. doi:10.1007/s00211-022-01292-1.
- R. Han. Sliced Wasserstein distance between probability measures on Hilbert spaces, 2023. arXiv:2307.05802.
- S. Helgason. Integral Geometry and Radon Transforms. Springer, New York, 2011. doi:10.1007/978-1-4419-6055-9.
- Generative sliced MMD flows with Riesz kernels. ICLR, 2024.
- R. Hielscher. The Radon Transform on the Rotation Group–Inversion and Application to Texture Analysis. Dissertation, Technische Universität Bergakademie Freiberg, 2007. URL: https://nbn-resolving.org/urn:nbn:de:bsz:105-3614018.
- The Radon transform on SO(3)𝑆𝑂3SO(3)italic_S italic_O ( 3 ): A Fourier slice theorem and numerical inversion. Inverse Problems, 24:025011, 2008. doi:10.1088/0266-5611/24/2/025011.
- An SVD in spherical surface wave tomography. In B. Hofmann, A. Leitao, and J. P. Zubelli, editors, New Trends in Parameter Identification for Mathematical Models, pages 121–144. Birkhäuser, 2018. doi:10.1007/978-3-319-70824-9_7.
- R. Hielscher and M. Quellmalz. Optimal mollifiers for spherical deconvolution. Inverse Problems, 31(8):085001, 2015. doi:10.1088/0266-5611/31/8/085001.
- R. Hielscher and M. Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Probl. Imaging, 10(3):711–739, 2016. doi:10.3934/ipi.2016018.
- Y.-H. Kim and B. Pass. Wasserstein barycenters over Riemannian manifolds. Adv. Math., 307:640–683, 2017. doi:10.1016/j.aim.2016.11.026.
- P. A. Knight. The Sinkhorn–Knopp algorithm: convergence and applications. SIAM J. Matrix Anal. Appl., 30(1):261–275, 2008. doi:10.1137/060659624.
- Generalized sliced Wasserstein distances. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 2019.
- The Radon cumulative distribution transform and its application to image classification. IEEE Trans Image Process., 25(2):920–34, 2016. doi:10.1109/TIP.2015.2509419.
- Neural optimal transport. In The Eleventh International Conference on Learning Representations, 2023. URL: https://openreview.net/forum?id=d8CBRlWNkqH.
- S. Kunis and D. Potts. Fast spherical Fourier algorithms. J. Comput. Appl. Math., 161:75–98, 2003. doi:10.1016/S0377-0427(03)00546-6.
- J. M. Lee. Introduction to Smooth Manifolds, volume 218 of Grad. Texts in Math. Springer, New York, 2012. doi:10.1007/978-1-4419-9982-5.
- G. Loeper. Regularity of optimal maps on the sphere: the quadratic cost and the reflector antenna. Arch. Rational Mech. Anal., 199(1):269–289, 2010. doi:10.1007/s00205-010-0330-x.
- Inversion algorithms for the spherical Radon and cosine transform. Inverse Problems, 27(3):035015, 2011. doi:10.1088/0266-5611/27/3/035015.
- Optimal-transport–based mesh adaptivity on the plane and sphere using finite elements. SIAM J. Sci. Comput., 40(2):A1121–A1148, 2018. doi:10.1137/16M1109515.
- A. Morawiec. Orientations and Rotations. Springer, Berlin, 2004. doi:10.1007/978-3-662-09156-2.
- F. Natterer and F. Wübbeling. Mathematical Methods in Image Reconstruction. SIAM, Philadelphia, PA, 2000. doi:10.1137/1.9780898718324.fm.
- Hierarchical sliced Wasserstein distance. In The Eleventh International Conference on Learning Representations, 2023. URL: https://openreview.net/forum?id=CUOaVn6mYEj.
- The cumulative distribution transform and linear pattern classification. Appl. Comput. Harmon. Anal., 45(3):616–641, 2018. doi:10.1016/j.acha.2017.02.002.
- G. Peyré and M. Cuturi. Computational optimal transport. Found. Trends Mach. Learn., 11(5-6):355–607, 2019. doi:10.1561/2200000073.
- Numerical Fourier Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel, 2nd edition, 2023. doi:10.1007/978-3-031-35005-4.
- M. Quellmalz. Reconstructing Functions on the Sphere from Circular Means. Dissertation. Universitätsverlag Chemnitz, 2019. URL: https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-384068.
- Sliced optimal transport on the sphere. Inverse Problems, 39(10):105005, 2023. doi:10.1088/1361-6420/acf156.
- The cone-beam transform and spherical convolution operators. Inverse Problems, 34(10):105006, 2018. doi:10.1088/1361-6420/aad679.
- A frame decomposition of the Funk-Radon transform. In L. Calatroni, M. Donatelli, S. Morigi, M. Prato, and M. Santacesaria, editors, Scale Space and Variational Methods in Computer Vision, SSVM 2023, pages 42–54. Springer, 2023. doi:10.1007/978-3-031-31975-4_4.
- Transportation distances on the circle. J. Math. Imaging Vis., 41:147–167, 2011. doi:10.1007/s10851-011-0284-0.
- Wasserstein barycenter and its application to texture mixing. In A. Bruckstein, B. ter Haar Romeny, A. Bronstein, and M. Bronstein, editors, Scale Space and Variational Methods in Computer Vision, SSVM 2011, pages 435–446. Springer, 2012. doi:10.1007/978-3-642-24785-9_37.
- B. Rubin. Generalized Minkowski-Funk transforms and small denominators on the sphere. Fract. Calc. Appl. Anal., 3(2):177–203, 2000.
- B. Rubin. The vertical slice transform on the unit sphere. Fractional Calculus and Applied Analysis, 22(4):899–917, 2019. doi:10.1515/fca-2019-0049.
- K. P. Rustamov. On approximation of functions on the sphere. Izv. RAN. Ser. Mat., 57(5):127–148, 1993. doi:10.1070/IM1994v043n02ABEH001566.
- R. M. Rustamov and S. Majumdar. Intrinsic sliced Wasserstein distances for comparing collections of probability distributions on manifolds and graphs, 2023. URL: https://proceedings.mlr.press/v202/rustamov23a.html.
- F. Santambrogio. Optimal Transport for Applied Mathematicians, volume 87 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Cham, 2015. doi:10.1007/978-3-319-20828-2.
- R. Schneider. Functions on a sphere with vanishing integrals over certain subspheres. J. Math. Anal. Appl., 26:381–384, 1969. doi:10.1016/0022-247X(69)90160-7.
- Parallel streaming Wasserstein barycenters. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/253f7b5d921338af34da817c00f42753-Abstract.html.
- M. Theveneau and N. Keriven. Stability of entropic Wasserstein barycenters and application to random geometric graphs. In 29° Colloque sur le traitement du signal et des images, pages 93–96. GRETSI - Groupe de Recherche en Traitement du Signal et des Images, 2023. URL: https://gretsi.fr/data/colloque/pdf/2023_keriven1083.pdf.
- P. Ungar. Freak theorem about functions on a sphere. J. Lond. Math. Soc., 1(1):100–103, 1954. doi:10.1112/jlms/s1-29.1.100.
- Kernel-based methods for inversion of the Radon transform on SO(3)SO3\mathrm{SO}(3)roman_SO ( 3 ) and their applications to texture analysis. J. Comput. Appl. Math., 199:122–140, 2007. doi:10.1016/j.cam.2005.12.003.
- Quantum Theory of Angular Momentum. World Scientific Publishing, Singapore, 1988. doi:10.1142/0270.
- N. J. Vilenkin. Special Functions and the Theory of Group Representations. AMS, Providence, RI, 1968.
- C. Villani. Topics in Optimal Transportation. Number 58 in Graduate Studies in Mathematics. American Mathematical Society, Providence, 2003. doi:10.1090/gsm/058.
- W. Wang and M. A. Carreira-Perpinán. Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application. arXiv preprint arXiv:1309.1541, 2013.
- F. W. Warner. Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics. Springer, New York, 1983. doi:10.1007/978-1-4757-1799-0.
- Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge–Ampère type equation. J. Comput. Physics, 308:102–123, 2016. doi:10.1016/j.jcp.2015.12.018.
- G. Zangerl and O. Scherzer. Exact reconstruction in photoacoustic tomography with circular integrating detectors II: Spherical geometry. Math. Methods Appl. Sci., 33(15):1771–1782, 2010. doi:10.1002/mma.1266.