Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Plane Wave Dynamic Model of Electric Power Networks with High Shares of Inverter-Based Resources (2401.16703v1)

Published 30 Jan 2024 in eess.SY and cs.SY

Abstract: Contemporary theories and models for electric power system stability are predicated on a widely held assumption that the mechanical inertia of the rotating mass of synchronous generators provides the sole contribution to stable and synchronized operation of this class of complex networks on subsecond timescales. Here we formulate the electromagnetic momentum of the field around the transmission lines that transports energy and present evidence from a real-world bulk power network that demonstrates its physical significance. We show the classical stability model for power networks that overlooks this property, known as the "swing equation", may become inadequate to analyze systems with high shares of inverter-based resources, commonly known as "low-inertia power systems". Subsequently, we introduce a plane wave dynamic model, consistent with the structural properties of emerging power systems with up to 100% inverter-based resources, which identifies the concept of inertia in power grids as a time-varying component. We leverage our theory to discuss a number of open questions in the electric power industry. Most notably, we postulate that the changing nature of power networks with a preponderance of variable renewable energy power plants could strengthen power network stability in the future; a vision which is irreconcilable with the conventional theories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, “Spontaneous synchrony in power-grid networks,” Nature Physics, vol. 9, no. 3, pp. 191–197, 2013.
  2. P. Denholm, T. Mai, R. W. Kenyon, B. Kroposki, and M. O’Malley, “Inertia and the power grid: A guide without the spin,” tech. rep., National Renewable Energy Lab.(NREL), Golden, CO (United States), 2020.
  3. T. E. D. Liacco, “The adaptive reliability control system,” IEEE Transactions on Power Apparatus and Systems, no. 5, pp. 517–531, 1967.
  4. H. Ye, Y. Liu, P. Zhang, and Z. Du, “Analysis and detection of forced oscillation in power system,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1149–1160, 2016.
  5. S. A. N. Sarmadi and V. Venkatasubramanian, “Inter-area resonance in power systems from forced oscillations,” IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 378–386, 2015.
  6. M. G. Dozein, O. Gomis-Bellmunt, and P. Mancarella, “Simultaneous provision of dynamic active and reactive power response from utility-scale battery energy storage systems in weak grids,” IEEE Transactions on Power Systems, vol. 36, no. 6, pp. 5548–5557, 2021.
  7. “System strength in the nem explained,” tech. rep., Australian Energy Market Operator (AEMO), 2020.
  8. John Wiley & Sons, 2020.
  9. F. Milano, “Complex frequency,” IEEE Transactions on Power Systems, vol. 37, no. 2, pp. 1230–1240, 2021.
  10. F. Milano, “A geometrical interpretation of frequency,” IEEE Transactions on Power Systems, vol. 37, no. 1, pp. 816–819, 2021.
  11. D. Moutevelis, J. Roldán-Pérez, M. Prodanovic, and F. Milano, “Taxonomy of power converter control schemes based on the complex frequency concept,” IEEE Transactions on Power Systems, 2023.
  12. X. He, V. Häberle, and F. Dörfler, “Complex-frequency synchronization of converter-based power systems,” arXiv preprint arXiv:2208.13860, 2022.
  13. P. Yang, F. Liu, T. Liu, and D. J. Hill, “Augmented synchronization of power systems,” arXiv preprint arXiv:2106.13166, 2021.
  14. Y. Li, T. C. Green, and Y. Gu, “The intrinsic communication in power systems: A new perspective to understand synchronization stability,” IEEE Transactions on Circuits and Systems I: Regular Papers, 2023.
  15. R. G. Olsen, High Voltage Overhead Transmission Line Electromagnetics. CreateSpace, an Amazon Company, 2015.
  16. John Wiley & Sons, 2011.
  17. A. R. Bergen, Power systems analysis. Pearson Education India, 2009.
  18. John Wiley & Sons, 2017.
  19. J. H. Poynting, “Xv. on the transfer of energy in the electromagnetic field,” Philosophical Transactions of the Royal Society of London, no. 175, pp. 343–361, 1884.
  20. J. C. Maxwell, “Viii. a dynamical theory of the electromagnetic field,” Philosophical transactions of the Royal Society of London, no. 155, pp. 459–512, 1865.
  21. John Wiley & Sons, 1990.
  22. A. E. Emanuel, “Poynting vector and the physical meaning of nonactive powers,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 4, pp. 1457–1462, 2005.
  23. C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 2012.
  24. A. Wolski, “Theory of electromagnetic fields,” arXiv preprint arXiv:1111.4354, 2011.
  25. J. Thomson, “Elements of the mathematical theory of electricity and magnetism (cambridge, london, 1904).”
  26. F. S. Johnson, B. L. Cragin, and R. R. Hodges, “Electromagnetic momentum density and the poynting vector in static fields,” American journal of physics, vol. 62, no. 1, pp. 33–41, 1994.
  27. D. Bak, D. Cangemi, and R. Jackiw, “Energy-momentum conservation in gravity theories,” Physical Review D, vol. 49, no. 10, p. 5173, 1994.
  28. H.-P. Beck and R. Hesse, “Virtual synchronous machine,” in 2007 9th international conference on electrical power quality and utilisation, pp. 1–6, IEEE, 2007.
  29. R. H. Lasseter, Z. Chen, and D. Pattabiraman, “Grid-forming inverters: A critical asset for the power grid,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 925–935, 2019.
  30. M. Sinha, F. Dörfler, B. B. Johnson, and S. V. Dhople, “Uncovering droop control laws embedded within the nonlinear dynamics of van der pol oscillators,” IEEE Transactions on Control of Network Systems, vol. 4, no. 2, pp. 347–358, 2015.
  31. T. Athay, R. Podmore, and S. Virmani, “A practical method for the direct analysis of transient stability,” IEEE Transactions on Power Apparatus and Systems, no. 2, pp. 573–584, 1979.
  32. A. Fernández Rodríguez, L. de Santiago Rodrigo, E. López Guillén, J. M. Rodríguez Ascariz, J. M. Miguel Jiménez, and L. Boquete, “Coding prony’s method in matlab and applying it to biomedical signal filtering,” BMC bioinformatics, vol. 19, pp. 1–14, 2018.
  33. A. Sajadi, R. W. Kenyon, and B.-M. Hodge, “Synchronization in electric power networks with inherent heterogeneity up to 100% inverter-based renewable generation,” Nature communications, vol. 13, no. 1, pp. 1–12, 2022.
  34. North American Electric Reliability Corporation (NERC), “Prc-006-npcc-2 - automatic underfrequency load shedding.,” 2021.
  35. L. Vanfretti, L. Dosiek, J. W. Pierre, D. Trudnowski, J. H. Chow, R. García-Valle, and U. Aliyu, “Application of ambient analysis techniques for the estimation of electromechanical oscillations from measured pmu data in four different power systems,” European Transactions on Electrical Power, vol. 21, no. 4, pp. 1640–1656, 2011.
  36. P. F. Mayer, M. Gordon, W.-C. Huang, and C. Hardt, “Improving grid strength in a wide-area transmission system with grid forming inverters,” IET Generation, Transmission & Distribution, vol. 17, no. 2, pp. 399–410, 2023.
  37. J. Matevosyan, J. MacDowell, N. Miller, B. Badrzadeh, D. Ramasubramanian, A. Isaacs, R. Quint, E. Quitmann, R. Pfeiffer, H. Urdal, et al., “A future with inverter-based resources: Finding strength from traditional weakness,” IEEE Power and Energy Magazine, vol. 19, no. 6, pp. 18–28, 2021.
  38. North America Electric Reliability Corporation (NERC), “Eastern interconnection oscillation disturbance: January 11, 2019 forced oscillation event,” 2019.
  39. Western Electricity Coordinating Council (WECC), “2021 ufls assessment,” 2022.
  40. J. Geddes, “Power system limitations in north western victoria and south western new south wales,” 2019.
  41. M. G. Dozein, P. Mancarella, T. K. Saha, and R. Yan, “System strength and weak grids: Fundamentals, challenges, and mitigation strategies,” in 2018 Australasian Universities Power Engineering Conference (AUPEC), pp. 1–7, IEEE, 2018.
  42. M. Trujillo, R. W. Kenyon, G. Yau, L. Yu, A. Hoke, and B.-M. Hodge, “Operability of a power system with synchronous condensers and grid-following inverters,” in 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), pp. 1038–1042, IEEE, 2022.
  43. R. W. Kenyon, A. Hoke, J. Tan, and B.-M. Hodge, “Grid-following inverters and synchronous condensers: A grid-forming pair?,” in 2020 Clemson University Power Systems Conference (PSC), pp. 1–7, IEEE, 2020.
  44. S. Hadavi, D. B. Rathnayake, G. Jayasinghe, A. Mehrizi-Sani, and B. Bahrani, “A robust exciter controller design for synchronous condensers in weak grids,” IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 1857–1867, 2021.
  45. Joint NERC and Texas RE Staff, “San fernando disturbance, southern california event: July 7, 2020,” NERC, Atlanta, GA, USA, 2020.
  46. Joint NERC and Texas RE Staff, “Odessa disturbance texas events: May 9, 2021 and june 26, 2021,” NERC, Atlanta, GA, USA, 2021.
  47. Joint NERC and Texas RE Staff, “Odessa disturbance texas event: June 4, 2022,” NERC, Atlanta, GA, USA, 2022.
  48. A. Adib, B. Mirafzal, X. Wang, and F. Blaabjerg, “On stability of voltage source inverters in weak grids,” Ieee Access, vol. 6, pp. 4427–4439, 2018.
  49. M. G. Dozein, B. C. Pal, and P. Mancarella, “Dynamics of inverter-based resources in weak distribution grids,” IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 3682–3692, 2022.
  50. B. Badrzadeh, Z. Emin, S. Goyal, S. Grogan, A. Haddadi, A. Halley, A. Louis, T. Lund, J. Matevosyan, T. Morton, et al., “System strength,” CIGRE Science&Engineering Journal, no. 20, 2021.
  51. D. Yang, X. Ruan, and H. Wu, “Impedance shaping of the grid-connected inverter with lcl filter to improve its adaptability to the weak grid condition,” IEEE Transactions on Power Electronics, vol. 29, no. 11, pp. 5795–5805, 2014.
  52. T. A. Short, Electric power distribution handbook. CRC press, 2003.
  53. B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M. Hodge, and B. Hannegan, “Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy,” IEEE Power and energy magazine, vol. 15, no. 2, pp. 61–73, 2017.
  54. D. Tucker, D. Kosterev, and A. Sajadi, “Frequency response in the western interconnection with significantly high shares of inverter-based resources: 100% renewable case,” in 2022 IEEE Power & Energy Society General Meeting (PESGM), pp. 1–5, IEEE, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.