Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Analysis of a Preconditioned Steepest Descent Solver for the Cahn-Hilliard Equation with Logarithmic Potential (2401.16316v2)

Published 29 Jan 2024 in math.NA and cs.NA

Abstract: In this paper, we provide a theoretical analysis for a preconditioned steepest descent (PSD) iterative solver that improves the computational time of a finite difference numerical scheme for the Cahn-Hilliard equation with Flory-Huggins energy potential. In the numerical design, a convex splitting approach is applied to the chemical potential such that the logarithmic and the surface diffusion terms are treated implicitly while the expansive concave term is treated with an explicit update. The nonlinear and singular nature of the logarithmic energy potential makes the numerical implementation very challenging. However, the positivity-preserving property for the logarithmic arguments, unconditional energy stability, and optimal rate error estimates have been established in a recent work and it has been shown that successful solvers ensure a similar positivity-preserving property at each iteration stage. Therefore, in this work, we will show that the PSD solver ensures a positivity-preserving property at each iteration stage. The PSD solver consists of first computing a search direction (involved with solving a Poisson-like equation) and then takes a one-parameter optimization step over the search direction in which the Newton iteration becomes very powerful. A theoretical analysis is applied to the PSD iteration solver and a geometric convergence rate is proved for the iteration. In particular, the strict separation property of the numerical solution, which indicates a uniform distance between the numerical solution and the singular limit values of $\pm 1$ for the phase variable, plays an essential role in the iteration convergence analysis. A few numerical results are presented to demonstrate the robustness and efficiency of the PSD solver.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com