Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Primordial black holes and scalar-induced gravitational waves from the polynomial attractor model (2401.16069v2)

Published 29 Jan 2024 in gr-qc

Abstract: Primordial black holes (PBHs) generated in the early Universe are considered as one of the candidates for dark matter. To produce PBHs with sufficient abundance, the primordial scalar power spectrum needs to be enhanced to the order of 0.01. Considering the third-order polynomial potential with polynomial $\alpha$ attractors, we show that PBHs with the mass about $10{17}$g can be produced while satisfying the constraints from the cosmic microwave background observations at the 2$\sigma$ confidence level. The mass of PBHs produced in the polynomial $\alpha$ attractors can be much bigger than that in the exponential $\alpha$ attractors. By adding a negative power-law term to the polynomials, abundant PBHs with different masses and the accompanying scalar-induced gravitational waves (SIGWs) with different peak frequency are easily generated. The PBHs with masses around $10{-15}-10{-12}$ $M_\odot$ can account for almost all dark matter. The SIGWs generated in the nanohertz band can explain the recent detection of stochastic gravitational-wave background by the pulsar timing array observations. The non-Gaussianity of the primordial curvature perturbations in the squeezed and equilateral limits are calculated numerically. We find that the non-Gaussianity correction greatly enhances the PBH abundance which makes the production of PBHs much easier, but the effect of non-Gaussianity on the generation of SIGWs is negligible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (96)
  1. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016a).
  2. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, Phys. Rev. Lett. 116, 131103 (2016b).
  3. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019).
  4. R. Abbott et al. (LIGO Scientific and Virgo Collaborations), GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. X 11, 021053 (2021).
  5. R. Abbott et al. (LIGO Scientific and Virgo Collaborations), GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, Phys. Rev. D 109, 022001 (2024).
  6. R. Abbott et al. (KAGRA, VIRGO and LIGO Scientific Collaborations), GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run, Phys. Rev. X 13, 041039 (2023).
  7. V. De Luca, G. Franciolini, and A. Riotto, NANOGrav Data Hints at Primordial Black Holes as Dark Matter, Phys. Rev. Lett. 126, 041303 (2021c).
  8. V. Vaskonen and H. Veermäe, Did NANOGrav see a signal from primordial black hole formation?, Phys. Rev. Lett. 126, 051303 (2021).
  9. K. Kohri and T. Terada, Solar-Mass Primordial Black Holes Explain NANOGrav Hint of Gravitational Waves, Phys. Lett. B 813, 136040 (2021).
  10. G. Domènech and S. Pi, NANOGrav hints on planet-mass primordial black holes, Sci. China Phys. Mech. Astron. 65, 230411 (2022).
  11. V. Atal, A. Sanglas, and N. Triantafyllou, NANOGrav signal as mergers of Stupendously Large Primordial Black Holes, J. Cosmol. Astropart. Phys. 06 (2021) 022.
  12. Z. Yi and Z.-H. Zhu, NANOGrav signal and LIGO-Virgo primordial black holes from the Higgs field, J. Cosmol. Astropart. Phys. 05 (2022) 046.
  13. A. Afzal et al. (NANOGrav Collaboration), The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951, L11 (2023).
  14. J. Antoniadis et al. (EPTA Collaboration), The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe, arXiv:2306.16227 .
  15. P. Ivanov, P. Naselsky, and I. Novikov, Inflation and primordial black holes as dark matter, Phys. Rev. D 50, 7173 (1994).
  16. M. Y. Khlopov, S. G. Rubin, and A. S. Sakharov, Primordial structure of massive black hole clusters, Astropart. Phys. 23, 265 (2005).
  17. B. Carr, F. Kuhnel, and M. Sandstad, Primordial Black Holes as Dark Matter, Phys. Rev. D 94, 083504 (2016).
  18. B. Carr and F. Kuhnel, Primordial Black Holes as Dark Matter: Recent Developments, Annu. Rev. Nucl. Part. Sci. 70, 355 (2020).
  19. B. J. Carr, The Primordial black hole mass spectrum, Astrophys. J. 201, 1 (1975).
  20. S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. R. Astron. Soc. 152, 75 (1971).
  21. B. J. Carr and S. W. Hawking, Black holes in the early Universe, Mon. Not. R. Astron. Soc. 168, 399 (1974).
  22. K. N. Ananda, C. Clarkson, and D. Wands, The Cosmological gravitational wave background from primordial density perturbations, Phys. Rev. D 75, 123518 (2007).
  23. R. Saito and J. Yokoyama, Gravitational wave background as a probe of the primordial black hole abundance, Phys. Rev. Lett. 102, 161101 (2009), [Erratum: Phys.Rev.Lett. 107, 069901 (2011)].
  24. K. Kohri and T. Terada, Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations, Phys. Rev. D 97, 123532 (2018).
  25. J. R. Espinosa, D. Racco, and A. Riotto, A Cosmological Signature of the SM Higgs Instability: Gravitational Waves, J. Cosmol. Astropart. Phys. 09 (2018) 012.
  26. G. Domènech, S. Pi, and M. Sasaki, Induced gravitational waves as a probe of thermal history of the universe, J. Cosmol. Astropart. Phys. 08 (2020) 017.
  27. M. Braglia, X. Chen, and D. K. Hazra, Probing Primordial Features with the Stochastic Gravitational Wave Background, J. Cosmol. Astropart. Phys. 03 (2021) 005.
  28. Z. Yi, Primordial black holes and scalar-induced gravitational waves from the generalized Brans-Dicke theory, J. Cosmol. Astropart. Phys. 03 (2023) 048.
  29. H. Di and Y. Gong, Primordial black holes and second order gravitational waves from ultra-slow-roll inflation, J. Cosmol. Astropart. Phys. 07 (2018) 007.
  30. J. R. Espinosa, D. Racco, and A. Riotto, Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter, Phys. Rev. Lett. 120, 121301 (2018b).
  31. J. Garcia-Bellido and E. Ruiz Morales, Primordial black holes from single field models of inflation, Phys. Dark Univ. 18, 47 (2017).
  32. C. Germani and T. Prokopec, On primordial black holes from an inflection point, Phys. Dark Univ. 18, 6 (2017).
  33. J. M. Ezquiaga, J. Garcia-Bellido, and E. Ruiz Morales, Primordial Black Hole production in Critical Higgs Inflation, Phys. Lett. B 776, 345 (2018).
  34. G. Ballesteros and M. Taoso, Primordial black hole dark matter from single field inflation, Phys. Rev. D 97, 023501 (2018).
  35. T.-J. Gao and Z.-K. Guo, Primordial Black Hole Production in Inflationary Models of Supergravity with a Single Chiral Superfield, Phys. Rev. D 98, 063526 (2018).
  36. I. Dalianis, S. Karydas, and E. Papantonopoulos, Generalized Non-Minimal Derivative Coupling: Application to Inflation and Primordial Black Hole Production, J. Cosmol. Astropart. Phys. 06 (2020) 040.
  37. G. Ballesteros, J. Beltran Jimenez, and M. Pieroni, Black hole formation from a general quadratic action for inflationary primordial fluctuations, J. Cosmol. Astropart. Phys. 06 (2019) 016.
  38. G. Sato-Polito, E. D. Kovetz, and M. Kamionkowski, Constraints on the primordial curvature power spectrum from primordial black holes, Phys. Rev. D 100, 063521 (2019).
  39. S. Passaglia, W. Hu, and H. Motohashi, Primordial black holes and local non-Gaussianity in canonical inflation, Phys. Rev. D 99, 043536 (2019).
  40. C. Fu, P. Wu, and H. Yu, Primordial Black Holes from Inflation with Nonminimal Derivative Coupling, Phys. Rev. D 100, 063532 (2019).
  41. R. Kawaguchi and S. Tsujikawa, Primordial black holes from Higgs inflation with a Gauss-Bonnet coupling, Phys. Rev. D 107, 063508 (2023).
  42. Y. Aldabergenov and S. V. Ketov, Primordial Black Holes from Volkov–Akulov–Starobinsky Supergravity, Fortsch. Phys. 71, 2300039 (2023).
  43. K. Cheung, C. J. Ouseph, and P.-Y. Tseng, NANOGrav Signal and PBH from the Modified Higgs Inflation, arXiv:2307.08046 .
  44. Y. Akrami et al. (Planck Collaboration), Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641, A10 (2020).
  45. J. Martin, H. Motohashi, and T. Suyama, Ultra Slow-Roll Inflation and the non-Gaussianity Consistency Relation, Phys. Rev. D 87, 023514 (2013).
  46. H. Motohashi, A. A. Starobinsky, and J. Yokoyama, Inflation with a constant rate of roll, J. Cosmol. Astropart. Phys. 09 (2015) 018.
  47. H. Motohashi and W. Hu, Primordial Black Holes and Slow-Roll Violation, Phys. Rev. D 96, 063503 (2017).
  48. F. Bezrukov, M. Pauly, and J. Rubio, On the robustness of the primordial power spectrum in renormalized Higgs inflation, J. Cosmol. Astropart. Phys. 02 (2018) 040.
  49. M. Cicoli, V. A. Diaz, and F. G. Pedro, Primordial Black Holes from String Inflation, J. Cosmol. Astropart. Phys. 06 (2018) 034.
  50. I. Dalianis, A. Kehagias, and G. Tringas, Primordial black holes from α𝛼\alphaitalic_α-attractors, J. Cosmol. Astropart. Phys. 01 (2019) 037.
  51. S. Passaglia, W. Hu, and H. Motohashi, Primordial black holes as dark matter through Higgs field criticality, Phys. Rev. D 101, 123523 (2020).
  52. N. Bhaumik and R. K. Jain, Primordial black holes dark matter from inflection point models of inflation and the effects of reheating, J. Cosmol. Astropart. Phys. 01 (2020) 037.
  53. A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91, 99 (1980).
  54. D. S. Salopek, J. R. Bond, and J. M. Bardeen, Designing Density Fluctuation Spectra in Inflation, Phys. Rev. D 40, 1753 (1989).
  55. R. Kallosh and A. Linde, Universality Class in Conformal Inflation, J. Cosmol. Astropart. Phys. 07 (2013) 002.
  56. R. Kallosh and A. Linde, Superconformal generalizations of the Starobinsky model, J. Cosmol. Astropart. Phys. 06 (2013) 028.
  57. R. Kallosh and A. Linde, Non-minimal Inflationary Attractors, J. Cosmol. Astropart. Phys. 10 (2013) 033.
  58. R. Kallosh and A. Linde, Multi-field Conformal Cosmological Attractors, J. Cosmol. Astropart. Phys. 12 (2013) 006.
  59. R. Kallosh, A. Linde, and D. Roest, Universal Attractor for Inflation at Strong Coupling, Phys. Rev. Lett. 112, 011303 (2014).
  60. R. Kallosh, A. Linde, and D. Roest, Superconformal Inflationary α𝛼\alphaitalic_α-Attractors, J. High Energ. Phys. 11 (2013) 198.
  61. R. Kallosh and A. Linde, Polynomial α𝛼\alphaitalic_α-attractors, J. Cosmol. Astropart. Phys. 04 (2022) 017.
  62. D. Frolovsky, S. V. Ketov, and S. Saburov, E-models of inflation and primordial black holes, Front. in Phys. 10, 1005333 (2022).
  63. D. Frolovsky and S. V. Ketov, Production of Primordial Black Holes in Improved E-Models of Inflation, Universe 9, 294 (2023).
  64. G. R. Dvali and S. H. H. Tye, Brane inflation, Phys. Lett. B 450, 72 (1999).
  65. L. Lorenz, J. Martin, and C. Ringeval, Brane inflation and the WMAP data: A Bayesian analysis, J. Cosmol. Astropart. Phys. 04 (2008) 001.
  66. R. Kallosh, A. Linde, and Y. Yamada, Planck 2018 and Brane Inflation Revisited, J. High Energ. Phys. 01 (2019) 008.
  67. R.-G. Cai, S. Pi, and M. Sasaki, Gravitational Waves Induced by non-Gaussian Scalar Perturbations, Phys. Rev. Lett. 122, 201101 (2019b).
  68. A. Kehagias, I. Musco, and A. Riotto, Non-Gaussian Formation of Primordial Black Holes: Effects on the Threshold, J. Cosmol. Astropart. Phys. 12 (2019) 029.
  69. V. Atal and C. Germani, The role of non-gaussianities in Primordial Black Hole formation, Phys. Dark Univ. 24, 100275 (2019).
  70. F. Riccardi, M. Taoso, and A. Urbano, Solving peak theory in the presence of local non-gaussianities, J. Cosmol. Astropart. Phys. 08 (2021) 060.
  71. Q. Gao, Y. Gong, and Z. Yi, Primordial black holes and secondary gravitational waves from natural inflation, Nucl. Phys. B 969, 115480 (2021).
  72. Q. Gao, Primordial black holes and secondary gravitational waves from chaotic inflation, Sci. China Phys. Mech. Astron. 64, 280411 (2021).
  73. J. S. Bullock and J. R. Primack, NonGaussian fluctuations and primordial black holes from inflation, Phys. Rev. D 55, 7423 (1997).
  74. P. Ivanov, Nonlinear metric perturbations and production of primordial black holes, Phys. Rev. D 57, 7145 (1998).
  75. J. Yokoyama, Cosmological constraints on primordial black holes produced in the near critical gravitational collapse, Phys. Rev. D 58, 107502 (1998).
  76. C. T. Byrnes, E. J. Copeland, and A. M. Green, Primordial black holes as a tool for constraining non-Gaussianity, Phys. Rev. D 86, 043512 (2012).
  77. G. Agazie et al. (NANOGrav Collaboration), The NANOGrav 15 yr Data Set: Detector Characterization and Noise Budget, Astrophys. J. Lett. 951, L10 (2023).
  78. J. Antoniadis et al. (EPTA and InPTA Collaborations), The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals, Astron. Astrophys. 678, A50 (2023b).
  79. K. Inomata and T. Nakama, Gravitational waves induced by scalar perturbations as probes of the small-scale primordial spectrum, Phys. Rev. D 99, 043511 (2019).
  80. K. Inomata, M. Kawasaki, and Y. Tada, Revisiting constraints on small scale perturbations from big-bang nucleosynthesis, Phys. Rev. D 94, 043527 (2016).
  81. S. Young, C. T. Byrnes, and M. Sasaki, Calculating the mass fraction of primordial black holes, J. Cosmol. Astropart. Phys. 07 (2014) 045.
  82. I. Musco and J. C. Miller, Primordial black hole formation in the early universe: critical behaviour and self-similarity, Classical Quantum Gravity 30, 145009 (2013).
  83. A. Escrivà, C. Germani, and R. K. Sheth, Universal threshold for primordial black hole formation, Phys. Rev. D 101, 044022 (2020).
  84. B. Dasgupta, R. Laha, and A. Ray, Neutrino and positron constraints on spinning primordial black hole dark matter, Phys. Rev. Lett. 125, 101101 (2020).
  85. P. W. Graham, S. Rajendran, and J. Varela, Dark Matter Triggers of Supernovae, Phys. Rev. D 92, 063007 (2015).
  86. H. Niikura et al., Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations, Nat. Astron. 3, 524 (2019).
  87. K. Griest, A. M. Cieplak, and M. J. Lehner, New Limits on Primordial Black Hole Dark Matter from an Analysis of Kepler Source Microlensing Data, Phys. Rev. Lett. 111, 181302 (2013).
  88. P. Tisserand et al. (EROS-2 Collaboration), Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds, Astron. Astrophys. 469, 387 (2007).
  89. C. J. Moore, R. H. Cole, and C. P. L. Berry, Gravitational-wave sensitivity curves, Classical Quantum Gravity 32, 015014 (2015).
  90. J. Luo et al. (TianQin Collaboration), TianQin: a space-borne gravitational wave detector, Classical Quantum Gravity 33, 035010 (2016).
  91. P. Amaro-Seoane et al. (LISA Collaboration), Laser Interferometer Space Antenna, arXiv:1702.00786 .
  92. W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity, Natl. Sci. Rev. 4, 685 (2017).
  93. P. A. R. Ade et al. (Planck Collaboration), Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys. 594, A17 (2016).
  94. D. K. Hazra, L. Sriramkumar, and J. Martin, BINGO: A code for the efficient computation of the scalar bi-spectrum, J. Cosmol. Astropart. Phys. 05 (2013) 026.
  95. J. M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, J. High Energ. Phys. 05 (2003) 013.
  96. P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, J. Cosmol. Astropart. Phys. 10 (2004) 006.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com