Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Differential Privacy and Contextual Integrity (2401.15774v1)

Published 28 Jan 2024 in cs.CR and cs.CY

Abstract: In this work, we propose the first framework for integrating Differential Privacy (DP) and Contextual Integrity (CI). DP is a property of an algorithm that injects statistical noise to obscure information about individuals represented within a database. CI defines privacy as information flow that is appropriate to social context. Analyzed together, these paradigms outline two dimensions on which to analyze privacy of information flows: descriptive and normative properties. We show that our new integrated framework provides benefits to both CI and DP that cannot be attained when each definition is considered in isolation: it enables contextually-guided tuning of the epsilon parameter in DP, and it enables CI to be applied to a broader set of information flows occurring in real-world systems, such as those involving PETs and machine learning. We conclude with a case study based on the use of DP in the U.S. Census Bureau.

Citations (7)

Summary

We haven't generated a summary for this paper yet.