Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recursive Subproduct Codes with Reed-Muller-like Structure (2401.15678v1)

Published 28 Jan 2024 in cs.IT and math.IT

Abstract: We study a family of subcodes of the $m$-dimensional product code $\mathscr{C}{\otimes m}$ ('subproduct codes') that have a recursive Plotkin-like structure, and which include Reed-Muller (RM) codes and Dual Berman codes as special cases. We denote the codes in this family as $\mathscr{C}{\otimes [r,m]}$, where $0 \leq r \leq m$ is the 'order' of the code. These codes allow a 'projection' operation that can be exploited in iterative decoding, viz., the sum of two carefully chosen subvectors of any codeword in $\mathscr{C}{\otimes [r,m]}$ belongs to $\mathscr{C}{\otimes [r-1,m-1]}$. Recursive subproduct codes provide a wide range of rates and block lengths compared to RM codes while possessing several of their structural properties, such as the Plotkin-like design, the projection property, and fast ML decoding of first-order codes. Our simulation results for first-order and second-order codes, that are based on a belief propagation decoder and a local graph search algorithm, show instances of subproduct codes that perform either better than or within 0.5 dB of comparable RM codes and CRC-aided Polar codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. P. Elias, “Error-free coding,” Transactions of the IRE Professional Group on Information Theory, vol. 4, no. 4, pp. 29–37, 1954.
  2. R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, 1981.
  3. J. Justesen, “Performance of product codes and related structures with iterated decoding,” IEEE Transactions on Communications, vol. 59, no. 2, pp. 407–415, 2011.
  4. M. C. Coşkun, T. Jerkovits, and G. Liva, “Successive cancellation list decoding of product codes with Reed-Muller component codes,” IEEE Commun. Lett., vol. 23, no. 11, pp. 1972–1976, 2019.
  5. M. V. Jamali, M. Fereydounian, H. Mahdavifar, and H. Hassani, “Low-complexity decoding of a class of Reed-Muller subcodes for low-capacity channels,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 123–128.
  6. M. C. Coşkun, G. Liva, A. Graell i Amat, M. Lentmaier, and H. D. Pfister, “Successive cancellation decoding of single parity-check product codes: Analysis and improved decoding,” IEEE Trans. Inf. Theory, vol. 69, no. 2, pp. 823–841, 2023.
  7. T. Mittelholzer, T. Parnell, N. Papandreou, and H. Pozidis, “Symmetry-based subproduct codes,” in 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp. 251–255.
  8. H. D. Pfister, S. K. Emmadi, and K. Narayanan, “Symmetric product codes,” in 2015 Information Theory and Applications Workshop (ITA), 2015, pp. 282–290.
  9. A. J. Feltstrom, D. Truhachev, M. Lentmaier, and K. S. Zigangirov, “Braided block codes,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2640–2658, 2009.
  10. B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” Journal of Lightwave Technology, vol. 30, no. 1, pp. 110–117, 2012.
  11. D. E. Muller, “Application of boolean algebra to switching circuit design and to error detection,” Transactions of the I.R.E. Professional Group on Electronic Computers, vol. EC-3, no. 3, pp. 6–12, 1954.
  12. I. Reed, “A class of multiple-error-correcting codes and the decoding scheme,” Transactions of the IRE Professional Group on Information Theory, vol. 4, no. 4, pp. 38–49, 1954.
  13. M. Ye and E. Abbe, “Recursive projection-aggregation decoding of Reed-Muller codes,” IEEE Trans. Inf. Theory, vol. 66, no. 8, pp. 4948–4965, 2020.
  14. M. Lian, C. Häger, and H. D. Pfister, “Decoding Reed–Muller codes using redundant code constraints,” in 2020 IEEE International Symposium on Information Theory (ISIT), 2020, pp. 42–47.
  15. Y. Be’ery and J. Snyders, “Optimal soft decision block decoders based on fast Hadamard transform,” IEEE Trans. Inf. Theory, vol. 32, no. 3, pp. 355–364, 1986.
  16. A. Ashikhmin and S. Litsyn, “Simple MAP decoding of first-order Reed-Muller and Hamming codes,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1812–1818, 2004.
  17. E. Abbe, A. Shpilka, and M. Ye, “Reed–Muller codes: Theory and algorithms,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 3251–3277, 2021.
  18. B. Zhang and Q. Huang, “Derivative descendants and ascendants of binary cyclic codes, and derivative decoding,” in 2022 IEEE Globecom Workshops (GC Wkshps), 2022, pp. 535–540.
  19. T. Blackmore and G. Norton, “On a family of abelian codes and their state complexities,” IEEE Trans. Inf. Theory, vol. 47, no. 1, pp. 355–361, 2001.
  20. S. Berman, “Semisimple cyclic and Abelian codes. II,” Cybernetics, vol. 3, no. 3, pp. 17–23, 1967.
  21. L. P. Natarajan and P. Krishnan, “Berman codes: A generalization of Reed–Muller codes that achieve BEC capacity,” IEEE Trans. Inf. Theory, vol. 69, no. 11, pp. 6956–6980, 2023.
  22. M. Kamenev, “On decoding of Reed-Muller codes using a local graph search,” IEEE Trans. Commun., vol. 70, no. 2, pp. 739–748, 2022.
  23. M. Fereydounian, H. Hassani, M. V. Jamali, and H. Mahdavifar, “Channel coding at low capacity,” IEEE Journal on Selected Areas in Information Theory, vol. 4, pp. 351–362, 2023.
  24. R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, A.-L. Horlemann-Trautmann, D. Karpuk, and I. Kubjas, “t𝑡titalic_t-Private information retrieval schemes using transitive codes,” IEEE Trans. Inf. Theory, vol. 65, no. 4, pp. 2107–2118, 2019.
  25. S. Kale, K. Agarwal, and P. Krishnan, “t-PIR schemes with flexible parameters via star products of Berman codes,” in 2023 IEEE International Symposium on Information Theory (ISIT), 2023, pp. 1348–1353.
  26. J. K. Wolf, “An introduction to tensor product codes and applications to digital storage systems,” in 2006 IEEE Information Theory Workshop - ITW ’06 Chengdu, 2006, pp. 6–10.
  27. H. Imai and H. Fujiya, “Generalized tensor product codes,” IEEE Trans. Inf. Theory, vol. 27, no. 2, pp. 181–187, 1981.
  28. P. Huang, E. Yaakobi, H. Uchikawa, and P. H. Siegel, “Binary linear locally repairable codes,” IEEE Trans. Inf. Theory, vol. 62, no. 11, pp. 6268–6283, 2016.
  29. J. R. Magnus and H. Neudecker, “The Commutation Matrix: Some Properties and Applications,” The Annals of Statistics, vol. 7, no. 2, pp. 381 – 394, 1979. [Online]. Available: https://doi.org/10.1214/aos/1176344621
  30. R. Miller, “Number of minimum-weight code words in a product code,” Electronics Letters, vol. 14, pp. 642–643(1), September 1978. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el_19780431
  31. J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 429–445, 1996.
  32. V. M. Sidel’nikov and A. Pershakov, “Decoding of Reed-Muller codes with a large number of errors,” Problemy Peredachi Informatsii, vol. 28, no. 3, pp. 80–94, 1992.
  33. B. Sakkour, “Decoding of second order Reed-Muller codes with a large number of errors,” in IEEE Information Theory Workshop, 2005.
  34. F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, 2001.
  35. X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the sum-product algorithm for decoding LDPC codes,” in GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No.01CH37270), vol. 2, 2001, pp. 1036–1036E vol.2.
  36. M. Rowshan, A. Burg, and E. Viterbo, “List decoder for Polar codes, CRC-Polar codes, and PAC codes,” https://github.com/mohammad-rowshan/List-Decoder-for-Polar-Codes-and-PAC-Codes, 2022.
  37. ——, “Polarization-adjusted convolutional (PAC) codes: Sequential decoding vs list decoding,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1434–1447, 2021.
  38. The MathWorks Inc., “5G New Radio Polar Coding ,” https://in.mathworks.com/help/5g/gs/polar-coding.html, Natick, Massachusetts, United States.
  39. I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller codes: recursive lists,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1260–1266, 2006.
  40. V. Bioglio, C. Condo, and I. Land, “Design of Polar codes in 5G New Radio,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 29–40, 2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com