Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complete Nevanlinna-Pick Kernels and the Curvature Invariant (2401.15591v1)

Published 28 Jan 2024 in math.FA

Abstract: We consider a unitarily invariant complete Nevanlinna-Pick kernel denoted by $s$ and a commuting $d$-tuple of bounded operators $T = (T_{1}, \dots, T_{d})$ satisfying a natural contractivity condition with respect to $s$. We associate with $T$ its curvature invariant which is a non-negative real number bounded above by the dimension of a defect space of $\bfT$. The instrument which makes this possible is the characteristic function developed in \cite{BJ}. \medskip We present an asymptotic formula for the curvature invariant. In the special case when $\bfT$ is pure, we provide a notably simpler formula, revealing that in this instance, the curvature invariant is an integer. We further investigate its connection with an algebraic invariant known as fibre dimension. Moreover, we obtain a refined and simplified asymptotic formula for the curvature invariant of $\bfT$ specifically when its characteristic function is a polynomial.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com