Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Positive Semidefinite Matrix Supermartingales (2401.15567v4)

Published 28 Jan 2024 in math.PR, math.FA, math.ST, stat.ME, stat.ML, and stat.TH

Abstract: We explore the asymptotic convergence and nonasymptotic maximal inequalities of supermartingales and backward submartingales in the space of positive semidefinite matrices. These are natural matrix analogs of scalar nonnegative supermartingales and backward nonnegative submartingales, whose convergence and maximal inequalities are the theoretical foundations for a wide and ever-growing body of results in statistics, econometrics, and theoretical computer science. Our results lead to new concentration inequalities for either martingale dependent or exchangeable random symmetric matrices under a variety of tail conditions, encompassing now-standard Chernoff bounds to self-normalized heavy-tailed settings. Further, these inequalities are usually expressed in the Loewner order, are sometimes valid simultaneously for all sample sizes or at an arbitrary data-dependent stopping time, and can often be tightened via an external randomization factor.

Citations (2)

Summary

We haven't generated a summary for this paper yet.