Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CRYSTALS-Kyber With Lattice Quantizer (2401.15534v1)

Published 28 Jan 2024 in cs.IT, cs.CR, and math.IT

Abstract: Module Learning with Errors (M-LWE) based key reconciliation mechanisms (KRM) can be viewed as quantizing an M-LWE sample according to a lattice codebook. This paper describes a generic M-LWE-based KRM framework, valid for any dimensional lattices and any modulus $q$ without a dither. Our main result is an explicit upper bound on the decryption failure rate (DFR) of M-LWE-based KRM. This bound allows us to construct optimal lattice quantizers to reduce the DFR and communication cost simultaneously. Moreover, we present a KRM scheme using the same security parameters $(q,k,\eta_1,\eta_2)$ as in Kyber. Compared with Kyber, the communication cost is reduced by up to $36.47\%$ and the DFR is reduced by a factor of up to $2{99}$. The security arguments remain the same as Kyber.

Summary

We haven't generated a summary for this paper yet.