Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Inference Accelerator for Spiking Neural Networks (2401.15453v1)

Published 27 Jan 2024 in cs.NE

Abstract: Bayesian neural networks offer better estimates of model uncertainty compared to frequentist networks. However, inference involving Bayesian models requires multiple instantiations or sampling of the network parameters, requiring significant computational resources. Compared to traditional deep learning networks, spiking neural networks (SNNs) have the potential to reduce computational area and power, thanks to their event-driven and spike-based computational framework. Most works in literature either address frequentist SNN models or non-spiking Bayesian neural networks. In this work, we demonstrate an optimization framework for developing and implementing efficient Bayesian SNNs in hardware by additionally restricting network weights to be binary-valued to further decrease power and area consumption. We demonstrate accuracies comparable to Bayesian binary networks with full-precision Bernoulli parameters, while requiring up to $25\times$ less spikes than equivalent binary SNN implementations. We show the feasibility of the design by mapping it onto Zynq-7000, a lightweight SoC, and achieve a $6.5 \times$ improvement in GOPS/DSP while utilizing up to 30 times less power compared to the state-of-the-art.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com