Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IRS Aided Millimeter-Wave Sensing and Communication: Beam Scanning, Beam Splitting, and Performance Analysis (2401.15344v1)

Published 27 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: Integrated sensing and communication (ISAC) has attracted growing interests for enabling the future 6G wireless networks, due to its capability of sharing spectrum and hardware resources between communication and sensing systems. However, existing works on ISAC usually need to modify the communication protocol to cater for the new sensing performance requirement, which may be difficult to implement in practice. In this paper, we study a new intelligent reflecting surface (IRS) aided millimeter-wave (mmWave) ISAC system by exploiting the distinct beam scanning operation in mmWave communications to achieve efficient sensing at the same time. First, we propose a two-phase ISAC protocol aided by a semi-passive IRS, consisting of beam scanning and data transmission. Specifically, in the beam scanning phase, the IRS finds the optimal beam for reflecting signals from the base station to a communication user via its passive elements. Meanwhile, the IRS directly estimates the angle of a nearby target based on echo signals from the target using its equipped active sensing element. Then, in the data transmission phase, the sensing accuracy is further improved by leveraging the data signals via possible IRS beam splitting. Next, we derive the achievable rate of the communication user as well as the Cram\'er-Rao bound and the approximate mean square error of the target angle estimation Finally, extensive simulation results are provided to verify our analysis as well as the effectiveness of the proposed scheme.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. R. Li, X. Shao, S. Sun, M. Tao, and R. Zhang, “Beam scanning for integrated sensing and communication in IRS-aided mmWave systems,” in Proc. IEEE SPAWC, Sep. 2023.
  2. A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. K. P. Tan, J. Lu, Y. Shen, F. Colone, and K. Chetty, “A survey on fundamental limits of integrated sensing and communication,” IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 994–1034, Feb. 2022.
  3. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  4. Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.
  5. Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313–3351, May 2021.
  6. X. Shao, L. Cheng, X. Chen, C. Huang, and D. W. K. Ng, “Reconfigurable intelligent surface-aided 6G massive access: Coupled tensor modeling and sparse Bayesian learning,” IEEE Trans. Wireless Commun., vol. 21, no. 12, pp. 10 145–10 161, Dec. 2022.
  7. Z.-M. Jiang, M. Rihan, P. Zhang, L. Huang et al., “Intelligent reflecting surface aided dual-function radar and communication system,” IEEE Syst. J., vol. 16, no. 1, pp. 475–486, Mar. 2022.
  8. X. Song, D. Zhao, H. Hua, T. X. Han, X. Yang, and J. Xu, “Joint transmit and reflective beamforming for IRS-assisted integrated sensing and communication,” in Proc. IEEE WCNC, Apr. 2022, pp. 189–194.
  9. X. Wang, Z. Fei, Z. Zheng, and J. Guo, “Joint waveform design and passive beamforming for RIS-assisted dual-functional radar-communication system,” IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 5131–5136, May 2021.
  10. X. Song, J. Xu, F. Liu, T. X. Han, and Y. C. Eldar, “Intelligent reflecting surface enabled sensing: Cramér-rao bound optimization,” IEEE Trans. Signal Process., vol. 71, pp. 2011–2026, 2023.
  11. R. Liu, M. Li, Y. Liu, Q. Wu, and Q. Liu, “Joint transmit waveform and passive beamforming design for RIS-aided DFRC systems,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 995–1010, May 2022.
  12. Y. He, Y. Cai, H. Mao, and G. Yu, “RIS-assisted communication radar coexistence: Joint beamforming design and analysis,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2131–2145, Jul. 2022.
  13. X. Cao, X. Hu, and M. Peng, “Feedback-based beam training for intelligent reflecting surface aided mmWave integrated sensing and communication,” IEEE Trans. Veh. Technol., vol. 72, no. 6, pp. 7584–7596, Jun. 2023.
  14. R. S. Prasobh Sankar, B. Deepak, and S. P. Chepuri, “Joint communication and radar sensing with reconfigurable intelligent surfaces,” in Proc. IEEE SPAWC, Sep. 2021, pp. 471–475.
  15. S. Chen, Z. Xiao, and Y. Zeng, “Simultaneous beam sweeping for multi-beam integrated sensing and communication,” in Proc. IEEE ICC, May 2022, pp. 4438–4443.
  16. M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi, “A tutorial on beam management for 3GPP NR at mmWave frequencies,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 173–196, Jan. 2019.
  17. X. Shao, C. You, W. Ma, X. Chen, and R. Zhang, “Target sensing with intelligent reflecting surface: Architecture and performance,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2070–2084, Jul. 2022.
  18. X. Shao and R. Zhang, “Enhancing wireless sensing via a target-mounted intelligent reflecting surface,” National Science Review, vol. 10, no. 8, p. nwad150, 2023.
  19. ——, “Target-mounted intelligent reflecting surface for secure wireless sensing,” 2023. [Online]. Available: https://arxiv.org/pdf/2308.02676.pdf
  20. L. Liu and S. Zhang, “A two-stage radar sensing approach based on MIMO-OFDM technology,” in Proc. IEEE Globecom Workshops, Dec. 2020, pp. 1–6.
  21. J. Chen, “When does asymptotic orthogonality exist for very large arrays?” in Proc. IEEE GLOBECOM, Dec. 2013, pp. 4146–4150.
  22. C. Richmond, “Mean-squared error and threshold snr prediction of maximum-likelihood signal parameter estimation with estimated colored noise covariances,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2146–2164, May 2006.
  23. A. Steinhardt and C. Bretherton, “Thresholds in frequency estimation,” in Proc. 1985 IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. 10, Mar. 1985, pp. 1273–1276.
  24. P. Forster, P. Larzabal, and E. Boyer, “Threshold performance analysis of maximum likelihood DOA estimation,” IEEE Trans. Signal Process., vol. 52, no. 11, pp. 3183–3191, Nov. 2004.
  25. F. Athley, “Threshold region performance of maximum likelihood direction of arrival estimators,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1359–1373, Apr. 2005.
  26. F. Filippini, F. Colone, and A. De Maio, “Threshold region performance of multicarrier maximum likelihood direction of arrival estimator,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 6, pp. 3517–3530, Jun. 2019.
  27. P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and cramer-rao bound,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 5, pp. 720–741, 1989.
Citations (2)

Summary

We haven't generated a summary for this paper yet.