Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Construction of Locally Repairable Array Codes with Optimal Repair Bandwidth under the Rack-Aware Storage Model (2401.15308v1)

Published 27 Jan 2024 in cs.IT and math.IT

Abstract: In this paper, we discuss codes for distributed storage systems with hierarchical repair properties. Specifically, we devote attention to the repair problem of the rack-aware storage model with locality, aiming to enhance the system's ability to repair a small number of erasures within each rack by locality and efficiently handling a rack erasure with a small repair bandwidth. By employing the regenerating coding technique, we construct a family of array codes with $(r,u-r+1)$-locality, where the $u$ nodes of each repair set are systematically organized into a rack. When the number of failures is less than $u - r + 1$, these failures can be repaired without counting the system bandwidth. In cases where the number of failures exceeds the locality, the failed nodes within a single rack can be recovered with optimal cross-rack bandwidth.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. A. Chowdhury and A. Vardy, “Improved schemes for asymptotically optimal repair of MDS codes,” IEEE Transactions on Information Theory, vol. 67, no. 8, pp. 5051-5068, 2021.
  2. A. Berman, S. Buzaglo, A. Dor, Y. Shany, and I. Tamo, “Repairing Reed-Solomon codes evaluated on subspaces,” IEEE Transactions on Information Theory, vol. 68, no. 10, pp. 6505-6515, 2022.
  3. A. Zeh and E. Yaakobi, “Bounds and constructions of codes with multiple localities,” in 2016 IEEE International Symposium on Information Theory Proceedings.   IEEE, 2016, pp. 640-644.
  4. A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath, “Optimal locally repairable and secure codes for distributed storage systems,” IEEE Transactions on Information Theory, vol. 60, no. 1, pp. 212-236, 2014.
  5. A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems,” IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4539-4551, 2010.
  6. A. Mazumdar, V. Chandar, and G. W. Wornell, “Update-efficiency and local repairability limits for capacity approaching codes,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 976-988, 2014.
  7. A. Wang and Z. Zhang, “Repair locality with multiple erasure tolerance,” IEEE Transactions on Information Theory, vol. 60, no. 11, pp. 6979-6987, 2014.
  8. B. Chen, W. Fang, S. T. Xia, J. Hao, and F.-W. Fu, “Improved bounds and Singleton-optimal constructions of locally repairable codes with minimum distance 5 and 6,” IEEE Transactions on Information Theory, vol. 67, no. 1, pp. 217-231, 2021.
  9. C. Xing and C. Yuan, “Construction of optimal locally recoverable codes and connection with hypergraph,” in 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).   Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
  10. F. J. MacWilliams and N. J. A. Sloane, “The theory of error-correcting codes," North-Holland, 1977.
  11. H. Cai, M. Cheng, C. Fan, and X. Tang, “Optimal locally repairable systematic codes based on packings,” IEEE Transactions on Communications, vol. 67, no. 1, pp. 39-49, 2019.
  12. H. Cai, Y. Miao, M. Schwartz, and X. Tang, “Repairing schemes for Tamo-Barg codes,” arXiv:2312.12803 [cs.IT], 2023.
  13. H. Cai, Y. Miao, M. Schwartz, and X. Tang, “On optimal locally repairable codes with super-linear length,” IEEE Transactions on Information Theory, vol. 66, no. 8, pp. 4853-4868, 2020.
  14. I. Tamo and A. Barg, “A family of optimal locally recoverable codes," IEEE Transactions on Information Theory, vol. 60, no. 8, pp. 4661-4676, 2014.
  15. I. Tamo, A. Barg, and A. Frolov, “Bounds on the parameters of locally recoverable codes,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3070-3083, 2016.
  16. J. Mardia, B. Bartan, and M. Wootters, “Repairing multiple failures for scalar MDS codes,” IEEE Transactions on Information Theory, vol. 65, no. 5, pp. 2661-2672, 2018.
  17. J. Li, X. Tang, and C. Tian, “A generic transformation to enable optimal repair in mds codes for distributed storage systems,” IEEE Transactions on Information Theory, vol. 64, no. 9, pp. 6257-6267, 2018.
  18. J. Li, X. Tang, H. Hou, Y. S. Han, B. Bai, and G. Zhang, “Pmds array codes with small sub-packetization, small repair bandwidth/rebuilding access,” IEEE Transactions on Information Theory, vol. 69, no. 3, pp. 1551-1566, 2022.
  19. K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction,” IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5227-5239, 2011.
  20. L. Jin, L. Ma, and C. Xing, “Construction of optimal locally repairable codes via automorphism groups of rational function fields,” IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 210-221, 2020.
  21. L. Holzbaur, S. Puchinger, E. Yaakobi, and A. Wachter-Zeh, “Partial MDS codes with local regeneration,” arXiv:2001.04711, 2020.
  22. M. Zorgui and Z. Wang, “Centralized multi-node repair regenerating codes,” IEEE Transactions on Information Theory, vol. 65, no. 7, pp. 4180-4206, 2019.
  23. M. Ye and A. Barg, “Explicit constructions of high-rate MDS array codes with optimal repair bandwidth,” IEEE Transactions on Information Theory, vol. 63, no. 4, pp. 2001-2014, 2017.
  24. M. Ye and A. Barg, “Cooperative repair: constructions of optimal MDS codes for all admissible parameters,” IEEE Transactions on Information Theory, vol. 65, no. 3, pp. 1639-1656, 2019.
  25. N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, “Optimal linear codes with a local-error-correction property,” in 2012 IEEE International Symposium on Information Theory Proceedings.   IEEE, 2012, pp. 2776-2780.
  26. P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of codeword symbols,” IEEE Transactions on Information Theory, vol. 58, no. 11, pp. 6925-6934, 2012.
  27. V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,” IEEE Transactions on Information Theory, vol. 63, no. 9, pp. 5684-5698, 2017.
  28. Y. Yang, H. Cai and X. Tang, “A transformation of repairing Reed-Solomon codes from rack-aware storage model to homogeneous storage model” arXiv:2401.11390 [cs.IT], 2024.
  29. Z. Chen and A. Barg, “Explicit constructions of MSR codes for clustered distributed storage: The Rack-Aware Storage Model,” IEEE Transactions on Information Theory, vol. 66, no. 2, pp. 886-899, 2020.

Summary

We haven't generated a summary for this paper yet.