Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

The quaternionic Maass Spezialschar on split $\mathrm{SO}(8)$ (2401.15277v1)

Published 27 Jan 2024 in math.NT

Abstract: The classical Maass Spezialschar is a Hecke-stable subspace of the level one holomorphic Siegel modular forms of genus two, i.e., on $\mathrm{Sp}_4$, cut out by certain linear relations between the Fourier coefficients. It is a theorem of Andrianov, Maass, and Zagier, that the classical Maass Spezialschar is exactly equal to the space of Saito-Kurokawa lifts. We study an analogous space of quaternionic modular forms on split $\mathrm{SO}_8$, and prove the analogue of the Andrianov-Maass-Zagier theorem. Our main tool for proving this theorem is the development of a theory of a Fourier-Jacobi expansion of quaternionic modular forms on orthogonal groups.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.