Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite Sample Confidence Regions for Linear Regression Parameters Using Arbitrary Predictors (2401.15254v1)

Published 27 Jan 2024 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We explore a novel methodology for constructing confidence regions for parameters of linear models, using predictions from any arbitrary predictor. Our framework requires minimal assumptions on the noise and can be extended to functions deviating from strict linearity up to some adjustable threshold, thereby accommodating a comprehensive and pragmatically relevant set of functions. The derived confidence regions can be cast as constraints within a Mixed Integer Linear Programming framework, enabling optimisation of linear objectives. This representation enables robust optimization and the extraction of confidence intervals for specific parameter coordinates. Unlike previous methods, the confidence region can be empty, which can be used for hypothesis testing. Finally, we validate the empirical applicability of our method on synthetic data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. Prediction-powered inference. arXiv preprint arXiv:2301.09633, 2023.
  2. M.C. Campi and E. Weyer. Guaranteed non-asymptotic confidence regions in system identification. Automatica, 41:1751–1764, 2005.
  3. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.
  4. Sign-perturbed sums: A new system identification approach for constructing exact non-asymptotic confidence regions in linear regression models. IEEE Transactions on Signal Processing, 63, jan 2015.
  5. Non-asymptotic confidence regions for the least-squares estimate. IFAC Proceedings Volumes, 45, 2012.
  6. Parameter identification for nonlinear systems: Guaranteed confidence regions through lscr. Automatica, 43, 2007.
  7. H. E. Daniels. A Distribution-Free Test for Regression Parameters. The Annals of Mathematical Statistics, 25, 1954.
  8. Finite sample confidence regions for parameters in prediction error identification using output error models. IFAC Proceedings Volumes, 41, 2008.
  9. Joint coverage regions: Simultaneous confidence and prediction sets, 2023.
  10. N.R. Draper and H. Smith. Applied Regression Analysis. Wiley, 1981.
  11. M. Gevers. A personal view of the development of system identification: A 30-year journey through an exciting field. IEEE Control Systems Magazine, 26, 2006.
  12. Introduction to Operations Research. McGraw-Hill, 2001.
  13. Peter J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics, 35, 1964.
  14. Koen Jochmans. Heteroscedasticity-robust inference in linear regression models with many covariates. Journal of the American Statistical Association, 117, 2022.
  15. Exact confidence regions for linear regression parameter under external arbitrary noise. Proceedings of the American Control Conference, 2014.
  16. Solving mixed-integer robust optimization problems with interval uncertainty using benders decomposition. Journal of the Operational Research Society, 66, 2015.
  17. Abraham Wald. Contributions to the theory of statistical estimation and testing hypotheses. The Annals of Mathematical Statistics, 10, 1939.
  18. Abraham Wald. Statistical decision functions which minimize the maximum risk. Annals of Mathematics, 46, 1945.
  19. Universal inference. Proceedings of the National Academy of Sciences, 117:16880–16890, 2020.
  20. Integer and Combinatorial Optimization. Wiley, 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com