Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 45 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

EM and XRM Connectomics Imaging and Experimental Metadata Standards (2401.15251v1)

Published 27 Jan 2024 in q-bio.NC

Abstract: High resolution volumetric neuroimaging datasets from electron microscopy (EM) and x-ray micro and holographic-nano tomography (XRM/XHN) are being generated at an increasing rate and by a growing number of research teams. These datasets are derived from an increasing number of species, in an increasing number of brain regions, and with an increasing number of techniques. Each of these large-scale datasets, often surpassing petascale levels, is typically accompanied by a unique and varied set of metadata. These datasets can be used to derive connectomes, or neuron-synapse level connectivity diagrams, to investigate the fundamental organization of neural circuitry, neuronal development, and neurodegenerative disease. Standardization is essential to facilitate comparative connectomics analysis and enhance data utilization. Although the neuroinformatics community has successfully established and adopted data standards for many modalities, this effort has not yet encompassed EM and XRM/ XHN connectomics data. This lack of standardization isolates these datasets, hindering their integration and comparison with other research performed in the field. Towards this end, our team formed a working group consisting of community stakeholders to develop Image and Experimental Metadata Standards for EM and XRM/XHN data to ensure the scientific impact and further motivate the generation and sharing of these data. This document addresses version 1.1 of these standards, aiming to support metadata services and future software designs for community collaboration. Standards for derived annotations are described in a companion document. Standards definitions are available on a community github page. We hope these standards will enable comparative analysis, improve interoperability between connectomics software tools, and continue to be refined and improved by the neuroinformatics community.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. L. A. Jorgenson, W. T. Newsome, D. J. Anderson, C. I. Bargmann, E. N. Brown, K. Deisseroth, J. P. Donoghue, K. L. Hudson, G. S. Ling, P. R. MacLeish, et al., “The BRAIN initiative: developing technology to catalyse neuroscience discovery,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 370, no. 1668, p. 20140164, 2015.
  2. J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, “The structure of the nervous system of the nematode caenorhabditis elegans: the mind of a worm,” Phil. Trans. R. Soc. Lond, vol. 314, no. 1, p. 340, 1986.
  3. D. Witvliet, B. Mulcahy, J. K. Mitchell, Y. Meirovitch, D. R. Berger, Y. Wu, Y. Liu, W. X. Koh, R. Parvathala, D. Holmyard, et al., “Connectomes across development reveal principles of brain maturation,” Nature, vol. 596, no. 7871, pp. 257–261, 2021.
  4. N. Kasthuri, K. J. Hayworth, D. R. Berger, R. L. Schalek, J. A. Conchello, S. Knowles-Barley, D. Lee, A. Vázquez-Reina, V. Kaynig, T. R. Jones, et al., “Saturated reconstruction of a volume of neocortex,” Cell, vol. 162, no. 3, pp. 648–661, 2015.
  5. D. D. Bock, W.-C. A. Lee, A. M. Kerlin, M. L. Andermann, G. Hood, A. W. Wetzel, S. Yurgenson, E. R. Soucy, H. S. Kim, and R. C. Reid, “Network anatomy and in vivo physiology of visual cortical neurons,” Nature, vol. 471, no. 7337, pp. 177–182, 2011.
  6. S. Dorkenwald, N. L. Turner, T. Macrina, K. Lee, R. Lu, J. Wu, A. L. Bodor, A. A. Bleckert, D. Brittain, N. Kemnitz, et al., “Binary and analog variation of synapses between cortical pyramidal neurons,” Elife, vol. 11, p. e76120, 2022.
  7. C. M. Schneider-Mizell, A. L. Bodor, F. Collman, D. Brittain, A. A. Bleckert, S. Dorkenwald, N. L. Turner, T. Macrina, K. Lee, R. Lu, et al., “Chandelier cell anatomy and function reveal a variably distributed but common signal,” BioRxiv, pp. 2020–03, 2020.
  8. MICrONS Consortium, J. A. Bae, M. Baptiste, C. A. Bishop, A. L. Bodor, D. Brittain, J. Buchanan, D. J. Bumbarger, M. A. Castro, B. Celii, et al., “Functional connectomics spanning multiple areas of mouse visual cortex,” BioRxiv, pp. 2021–07, 2021.
  9. S.-y. Takemura, A. Bharioke, Z. Lu, A. Nern, S. Vitaladevuni, P. K. Rivlin, W. T. Katz, D. J. Olbris, S. M. Plaza, P. Winston, et al., “A visual motion detection circuit suggested by drosophila connectomics,” Nature, vol. 500, no. 7461, pp. 175–181, 2013.
  10. C. S. Xu, M. Januszewski, Z. Lu, S.-y. Takemura, K. J. Hayworth, G. Huang, K. Shinomiya, J. Maitin-Shepard, D. Ackerman, S. Berg, et al., “A connectome of the adult drosophila central brain,” BioRxiv, pp. 2020–01, 2020.
  11. S. Dorkenwald, A. Matsliah, A. R. Sterling, P. Schlegel, S.-C. Yu, C. E. McKellar, A. Lin, M. Costa, K. Eichler, Y. Yin, et al., “Neuronal wiring diagram of an adult brain,” bioRxiv, 2023.
  12. A. Shapson-Coe, M. Januszewski, D. R. Berger, A. Pope, Y. Wu, T. Blakely, R. L. Schalek, P. H. Li, S. Wang, J. Maitin-Shepard, et al., “A connectomic study of a petascale fragment of human cerebral cortex,” BioRxiv, pp. 2021–05, 2021.
  13. R. Hider Jr, D. Kleissas, T. Gion, D. Xenes, J. Matelsky, D. Pryor, L. Rodriguez, E. C. Johnson, W. Gray-Roncal, and B. Wester, “The brain observatory storage service and database (BossDB): a cloud-native approach for petascale neuroscience discovery,” Frontiers in Neuroinformatics, vol. 16, p. 828787, 2022.
  14. S. Dorkenwald, C. M. Schneider-Mizell, D. Brittain, A. Halageri, C. Jordan, N. Kemnitz, M. A. Castro, W. Silversmith, J. Maitin-Shephard, J. Troidl, et al., “CAVE: Connectome annotation versioning engine,” bioRxiv, 2023.
  15. N. L. Turner, T. Macrina, J. A. Bae, R. Yang, A. M. Wilson, C. Schneider-Mizell, K. Lee, R. Lu, J. Wu, A. L. Bodor, et al., “Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity,” Cell, vol. 185, no. 6, pp. 1082–1100, 2022.
  16. Braincircuits, “Braincircuits.io: Platform for comparative connectomics.” https://braincircuits.io/, 2024. [Online; accessed 26-Jan-2024].
  17. W. T. Katz and S. M. Plaza, “DVID: distributed versioned image-oriented dataservice,” Frontiers in neural circuits, p. 5, 2019.
  18. M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al., “The FAIR guiding principles for scientific data management and stewardship,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.
  19. E. C. Johnson, T. T. Nguyen, B. K. Dichter, F. Zappulla, M. Kosma, K. Gunalan, Y. O. Halchenko, S. Q. Neufeld, M. Schirner, P. Ritter, et al., “A maturity model for operations in neuroscience research,” arXiv preprint arXiv:2401.00077, 2023.
  20. O. Rübel, A. Tritt, R. Ly, B. K. Dichter, S. Ghosh, L. Niu, P. Baker, I. Soltesz, L. Ng, K. Svoboda, et al., “The neurodata without borders ecosystem for neurophysiological data science,” Elife, vol. 11, p. e78362, 2022.
  21. S. Hayashi, B. A. Caron, A. S. Heinsfeld, S. Vinci-Booher, B. McPherson, D. N. Bullock, G. Berto, G. Niso, S. Hanekamp, D. Levitas, et al., “brainlife. io: A decentralized and open source cloud platform to support neuroscience research,” ArXiv, 2023.
  22. C. J. Markiewicz, K. J. Gorgolewski, F. Feingold, R. Blair, Y. O. Halchenko, E. Miller, N. Hardcastle, J. Wexler, O. Esteban, M. Goncavles, et al., “The OpenNeuro resource for sharing of neuroscience data,” Elife, vol. 10, p. e71774, 2021.
  23. A. Delorme, D. Truong, C. Youn, S. Sivagnanam, C. Stirm, K. Yoshimoto, R. A. Poldrack, A. Majumdar, and S. Makeig, “NEMAR: an open access data, tools and compute resource operating on neuroelectromagnetic data,” Database, vol. 2022, p. baac096, 2022.
  24. K. Benninger, G. Hood, D. Simmel, L. Tuite, A. Wetzel, A. Ropelewski, S. Watkins, A. Watson, and M. Bruchez, “Cyberinfrastructure of a multi-petabyte microscopy resource for neuroscience research,” in Practice and Experience in Advanced Research Computing, pp. 1–7, Association for Computing Machinery, 2020.
  25. S. A. Ament, R. S. Adkins, R. Carter, E. Chrysostomou, C. Colantuoni, J. Crabtree, H. H. Creasy, K. Degatano, V. Felix, P. Gandt, et al., “The Neuroscience Multi-Omic Archive: a BRAIN initiative resource for single-cell transcriptomic and epigenomic data from the mammalian brain,” Nucleic acids research, vol. 51, no. D1, pp. D1075–D1085, 2023.
  26. D. Duncan, R. Garner, S. Brinkerhoff, H. C. Walker, N. Pouratian, and A. W. Toga, “Data Archive for the BRAIN Initiative (DABI),” Scientific Data, vol. 10, no. 1, p. 83, 2023.
  27. BRAIN Initiative Cell Census Network, “A multimodal cell census and atlas of the mammalian primary motor cortex,” Nature, vol. 598, no. 7879, p. 86, 2021.
  28. M. Hawrylycz, M. E. Martone, G. A. Ascoli, J. G. Bjaalie, H.-W. Dong, S. S. Ghosh, J. Gillis, R. Hertzano, D. R. Haynor, P. R. Hof, et al., “A guide to the BRAIN Initiative Cell Census Network data ecosystem,” PLoS biology, vol. 21, no. 6, p. e3002133, 2023.
  29. Nature Editorial, “Why mega brain project teams need to be talking to each other.” https://doi.org/10.1038/d41586-023-03954-y, 2023. [Online; accessed 26-Jan-2024].
  30. K. M. Boergens, M. Berning, T. Bocklisch, D. Bräunlein, F. Drawitsch, J. Frohnhofen, T. Herold, P. Otto, N. Rzepka, T. Werkmeister, et al., “webKnossos: efficient online 3d data annotation for connectomics,” nature methods, vol. 14, no. 7, pp. 691–694, 2017.
  31. W. Silversmith, “Cloudvolume: client for reading and writing to neuroglancer precomputed volumes on cloud services.” https://github.com/seung-lab/cloud-volume, 2022. [Online; accessed 20-Jan-2024].
  32. J. Maitin-Shepard, “Neuroglancer.” https://github.com/google/neuroglancer, 2023. [Online; accessed 20-Jan-2024].
  33. J. Clements, T. Dolafi, L. Umayam, N. L. Neubarth, S. Berg, L. K. Scheffer, and S. M. Plaza, “Neu Print: Analysis tools for em connectomics,” BioRxiv, pp. 2020–01, 2020.
  34. L. M. Collinson, C. Bosch, A. Bullen, J. J. Burden, R. Carzaniga, C. Cheng, M. C. Darrow, G. Fletcher, E. Johnson, K. Narayan, et al., “Volume EM: a quiet revolution takes shape,” Nature Methods, pp. 1–6, 2023.
  35. K. J. Gorgolewski, T. Auer, V. D. Calhoun, R. C. Craddock, S. Das, E. P. Duff, G. Flandin, S. S. Ghosh, T. Glatard, Y. O. Halchenko, et al., “The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.
  36. A. J. Ropelewski, M. A. Rizzo, J. R. Swedlow, J. Huisken, P. Osten, N. Khanjani, K. Weiss, V. Bakalov, M. Engle, L. Gridley, et al., “Standard metadata for 3D microscopy,” Scientific Data, vol. 9, no. 1, p. 449, 2022.
  37. A. Iudin, P. K. Korir, S. Somasundharam, S. Weyand, C. Cattavitello, N. Fonseca, O. Salih, G. J. Kleywegt, and A. Patwardhan, “Empiar: the electron microscopy public image archive,” Nucleic Acids Research, vol. 51, no. D1, pp. D1503–D1511, 2023.
  38. MongoDB, “Database sharding: Concepts and examples.” https://www.mongodb.com/features/database-sharding-explained#:~:text=Sharding%20is%20a%20method%20for,storage%20capacity%20of%20the%20system, 2024. [Online; accessed 20-Jan-2024].
  39. J. Moore, D. Basurto-Lozada, S. Besson, J. Bogovic, J. Bragantini, E. M. Brown, J.-M. Burel, X. Casas Moreno, G. de Medeiros, E. E. Diel, et al., “OME-Zarr: a cloud-optimized bioimaging file format with international community support,” bioRxiv, pp. 2023–02, 2023.
  40. N5, “N5.” https://github.com/saalfeldlab/n5, 2024. [Online; accessed 20-Jan-2024].
  41. Google, “Tensorstore.” https://google.github.io/tensorstore/, 2024. [Online; accessed 20-Jan-2024].
  42. A. T. Kuan, “Dense neuronal reconstruction through x-ray holographic nano-tomography,” Biophysical Journal, vol. 118, no. 3, p. 290a, 2020.
  43. National Center for Biotechnology Information, “Home - taxonomy - ncbi.” https://www.ncbi.nlm.nih.gov/taxonomy, 2024. [Online; accessed 20-Jan-2024].
  44. Creative Commons, “Creative commons - attribution 4.0 international - cc by 4.0.” https://creativecommons.org/licenses/by/4.0/, 2024. [Online; accessed 20-Jan-2024].
  45. E. Barsotti, A. Correia, and A. Cardona, “Neural architectures in the light of comparative connectomics,” Current Opinion in Neurobiology, vol. 71, pp. 139–149, 2021.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com