Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instantaneous Power Theory Revisited with Classical Mechanics (2401.15129v2)

Published 26 Jan 2024 in eess.SY, cs.SY, and math.DG

Abstract: The paper revisits the concepts of instantaneous active and reactive powers and provides a novel definition for basic circuit elements based on quantities utilized in classical mechanics, such as absolute and relative velocity, momentum density, angular momentum and apparent forces. The discussion leverages from recent publications by the authors that interpret the voltage and current as velocities in generalized Lagrangian coordinates. The main result of the paper is a general and compact expression for the instantaneous active and reactive power of inductances, capacitances and resistances as a multivector proportional to the generalized kinetic energy and the geometric frequency multivector. Several numerical examples considering stationary and transient sinusoidal and non-sinusoidal conditions are discussed in the case study.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. IEEE Power System Instrumentation and Measurements Committee, “IEEE standard definitions for the measurement of electric power quantities under sinusoidal, non-sinusoidal, balanced, or unbalanced conditions,” IEEE Std 1459-2010, pp. 1–40, 2010.
  2. H. Kirkham, D. Strickland, A. Berrisford, A. Riepnieks, J. Voisine, and J. Britton, “Overview of IEEE Standard 1459 revision,” in IEEE PES General Meeting, 2022, pp. 1–5.
  3. M. Depenbrock, “The FBD-method, a generally applicable tool for analyzing power relations,” IEEE Trans. on Power Systems, vol. 8, no. 2, pp. 381–387, 1993.
  4. V. Staudt, “Fryze - buchholz - depenbrock: A time-domain power theory,” in International School on Nonsinusoidal Currents and Compensation, 2008, pp. 1–12.
  5. H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators comprising switching devices without energy storage components,” IEEE Trans. on Industry Applications, vol. IA-20, no. 3, pp. 625–630, 1984.
  6. F. Z. Peng and J.-S. Lai, “Generalized instantaneous reactive power theory for three-phase power systems,” IEEE Trans. on Instrumentation and Measurement, vol. 45, no. 1, pp. 293–297, 1996.
  7. J. Willems, “A new interpretation of the Akagi-Nabae power components for nonsinusoidal three-phase situations,” IEEE Trans. on Instrumentation and Measurement, vol. 41, no. 4, pp. 523–527, 1992.
  8. L. Cristaldi and A. Ferrero, “Mathematical foundations of the instantaneous power concepts: An algebraic approach,” European Trans. on Electrical Power, vol. 6, no. 5, pp. 305–309, 1996.
  9. A. M. Stanković and T. Aydin, “Analysis of asymmetrical faults in power systems using dynamic phasors,” IEEE Trans. on Power Systems, vol. 15, no. 3, pp. 1062–1068, Aug. 2000.
  10. X. Dai, G. Liu, and R. Gretsch, “Generalized theory of instantaneous reactive quantity for multiphase power system,” IEEE Trans. on Power Delivery, vol. 19, no. 3, pp. 965–972, 2004.
  11. A. Menti, T. Zacharias, and J. Milias-Argitis, “Geometric algebra: A powerful tool for representing power under nonsinusoidal conditions,” IEEE Trans. on Circuits and Systems - I: Regular Papers, vol. 54, no. 3, pp. 601–609, 2007.
  12. M. Castilla, J. C. Bravo, M. Ordoñez, and J. C. Montano, “Clifford theory: A geometrical interpretation of multivectorial apparent power,” IEEE Trans. on Circuits and Systems - I: Regular Papers, vol. 55, no. 10, pp. 3358–3367, 2008.
  13. H. Lev-Ari and A. M. Stankovic, “Instantaneous power quantities in polyphase systems – A geometric algebra approach,” in IEEE Energy Conversion Congress and Exposition, 2009, pp. 592–596.
  14. M. Castro-Núñez and R. Castro-Puche, “Advantages of geometric algebra over complex numbers in the analysis of networks with nonsinusoidal sources and linear loads,” IEEE Trans. on Circuits and Systems - I: Regular Papers, vol. 59, no. 9, pp. 2056–2064, 2012.
  15. S. P. Talebi and D. P. Mandic, “A quaternion frequency estimator for three-phase power systems,” in IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 3956–3960.
  16. N. Barry, “The application of quaternions in electrical circuits,” in 2016 27th Irish Signals and Systems Conference (ISSC), 2016, pp. 1–9.
  17. V. d. P. Brasil, A. de Leles Ferreira Filho, and J. Y. Ishihara, “Electrical three phase circuit analysis using quaternions,” in 18th Int. Conf. on Harmonics and Quality of Power (ICHQP), 2018, pp. 1–6.
  18. F. G. Montoya, R. Baños, A. Alcayde, F. M. Arrabal-Campos, and J. Roldán-Pérez, “Vector geometric algebra in power systems: An updated formulation of apparent power under non-sinusoidal conditions,” Mathematics, vol. 9, no. 11, article no. 1295, pp. 1–18, 2021.
  19. F. Milano, “A geometrical interpretation of frequency,” IEEE Trans. on Power Systems, vol. 37, no. 1, pp. 816–819, 2021.
  20. F. Milano, G. Tzounas, I. Dassios, and T. Kërçi, “Applications of the Frenet frame to electric circuits,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 69, no. 4, pp. 1668–1680, 2022.
  21. F. Milano, G. Tzounas, I. Dassios, M. A. A. Murad, and T. Kërçi, “Using differential geometry to revisit the paradoxes of the instantaneous frequency,” IEEE Open Access Journal of Power and Energy, vol. 9, pp. 501–513, 2022.
  22. F. Milano, “The Frenet frame as a generalization of the Park transform,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 70, no. 2, pp. 966–976, 2023.
  23. L. Chua and J. McPherson, “Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks,” IEEE Trans. on Circuits and Systems, vol. 21, no. 2, pp. 277–286, 1974.
  24. J. L. Willems, “Mathematical foundations of the instantaneous power concepts: A geometrical approach,” European Trans. on Electrical Power, vol. 6, no. 5, pp. 299–304, 1996.
  25. T. Menninger, “Frenet curves and successor curves: Generic parametrizations of the helix and slant helix,” arXiv:1302.3175, 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.