Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Fréchet Distance Approximation through Truncated Smoothing (2401.14815v1)

Published 26 Jan 2024 in cs.CG

Abstract: The Fr\'echet distance is a popular distance measure for curves. Computing the Fr\'echet distance between two polygonal curves of $n$ vertices takes roughly quadratic time, and conditional lower bounds suggest that even approximating to within a factor $3$ cannot be done in strongly-subquadratic time, even in one dimension. The current best approximation algorithms present trade-offs between approximation quality and running time. Recently, van der Horst $\textit{et al.}$ (SODA, 2023) presented an $O((n2 / \alpha) \log3 n)$ time $\alpha$-approximate algorithm for curves in arbitrary dimensions, for any $\alpha \in [1, n]$. Our main contribution is an approximation algorithm for curves in one dimension, with a significantly faster running time of $O(n \log3 n + (n2 / \alpha3) \log2 n \log \log n)$. Additionally, we give an algorithm for curves in arbitrary dimensions that improves upon the state-of-the-art running time by a logarithmic factor, to $O((n2 / \alpha) \log2 n)$. Both of our algorithms rely on a linear-time simplification procedure that in one dimension reduces the complexity of the reachable free space to $O(n2 / \alpha)$ without making sacrifices in the asymptotic approximation factor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Computing the discrete Fréchet distance in subquadratic time. SIAM Journal on Computing, 43(2):429–449, 2014. doi:10.1137/130920526.
  2. Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, 5:75–91, 1995. doi:10.1142/S0218195995000064.
  3. Fréchet distance for curves, revisited. In Proc. 14th Annual European Symposium on Algorithms (ESA), pages 52–63, 2006. doi:10.1007/11841036_8.
  4. Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461, 1973. doi:10.1016/S0022-0000(73)80033-9.
  5. Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless SETH fails. In Proc. 55th Annual Symposium on Foundations of Computer Science (FOCS), pages 661–670, 2014. doi:10.1109/FOCS.2014.76.
  6. Tight bounds for approximate near neighbor searching for time series under the Fréchet distance. In Proc. 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 517–550. SIAM, 2022. doi:10.1137/1.9781611977073.25.
  7. Improved approximation for Fréchet distance on c-packed curves matching conditional lower bounds. International Journal of Computational Geometry & Applications, 27(1-2):85–120, 2017. doi:10.1142/S0218195917600056.
  8. Approximability of the discrete Fréchet distance. Journal of Computational Geometry, 7(2):46–76, 2016. doi:10.20382/jocg.v7i2a4.
  9. Four soviets walk the dog: Improved bounds for computing the Fréchet distance. Discrete & Computational Geometry, 58(1):180–216, 2017. doi:10.1007/s00454-017-9878-7.
  10. SETH says: Weak Fréchet distance is faster, but only if it is continuous and in one dimension. In Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2887–2901, 2019. doi:10.1137/1.9781611975482.179.
  11. Efficient Fréchet distance queries for segments. In Proc. 30th Annual European Symposium on Algorithms (ESA), pages 29:1–29:14, 2022. doi:10.4230/LIPIcs.ESA.2022.29.
  12. A family of metrics from the truncated smoothing of Reeb graphs. In Proc. 37th International Symposium on Computational Geometry (SoCG), pages 22:1–22:17, 2021. doi:10.4230/LIPIcs.SoCG.2021.22.
  13. An improved approximation algorithm for the discrete Fréchet distance. Information Processing Letters, 138:72–74, 2018. doi:10.1016/j.ipl.2018.06.011.
  14. Robust and fast similarity search for moving object trajectories. In Proc. 31st ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 491–502, 2005. doi:10.1145/1066157.1066213.
  15. Approximating the (continuous) Fréchet distance. In Proc. 37th International Symposium on Computational Geometry (SoCG), pages 26:1–26:14, 2021. doi:10.4230/LIPIcs.SoCG.2021.26.
  16. Jaywalking your dog: Computing the Fréchet distance with shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013. doi:10.1137/120865112.
  17. Approximating the Fréchet distance for realistic curves in near linear time. Discrete & Computational Geometry, 48(1):94–127, 2012. doi:10.1007/s00454-012-9402-z.
  18. Clustering time series under the Fréchet distance. In Proc. 27th Annual Symposium on Discrete Algorithms (SODA), pages 766–785, 2016. doi:10.1137/1.9781611974331.ch55.
  19. Computing discrete Fréchet distance. Technical report, Vienna University of Technology, 1994.
  20. Scaling and related techniques for geometry problems. In Proc. 16th Annual ACM Symposium on Theory of Computing (STOC), pages 135–143, 1984. doi:10.1145/800057.808675.
  21. Michael Godau. A natural metric for curves - computing the distance for polygonal chains and approximation algorithms. In Proc. 8th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 127–136, 1991. doi:10.1007/BFb0020793.
  22. Fast Fréchet distance between curves with long edges. International Journal of Computational Geometry & Applications, 29(2):161–187, 2019. doi:10.1142/S0218195919500043.
  23. Fast subsequence matching under time warping in time-series databases. In Proc. 12th International Conference on Machine Learning and Cybernetics (ICML), pages 1584–1590, 2013. doi:10.1109/ICMLC.2013.6890855.
  24. Continuous dynamic time warping for translation-invariant curve alignment with applications to signature verification. In Proc. 7th International Conference on Computer Vision (ICCV), pages 108–115, 1999. doi:10.1109/ICCV.1999.791205.
  25. A subquadratic nε𝜀{}^{\mbox{{$\varepsilon$}}}start_FLOATSUPERSCRIPT italic_ε end_FLOATSUPERSCRIPT-approximation for the continuous Fréchet distance. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1759–1776, 2023. doi:10.1137/1.9781611977554.ch67.
  26. Jean Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229–239, 1980. doi:10.1145/358841.358852.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com