Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Shuttling Procedures for Constrained Silicon Quantum Dot Array (2401.14683v1)

Published 26 Jan 2024 in quant-ph and cs.ET

Abstract: In silicon quantum computers, a single electron is trapped in a microstructure called a quantum dot, and its spin is used as a qubit. For large-scale integration of qubits, we previously proposed an approach of arranging the quantum dots in a two-dimensional array and sharing a control gate in a row or column of the array. In our array, the shuttling of electrons is a useful technique to operate the target qubit independently and avoid crosstalk. However, since the shuttling is also conducted using shared control gates, the movement of qubits is complexly constrained. We therefore propose a formal model on the basis of state transition systems to describe those constraints and operation procedures on the array. We also present an approach to generate operation procedures under the constraints. Utilizing this approach, we present a concrete method for our 16 $\times$ 8 quantum dot array. By implementing the proposed method as a quantum compiler, we confirmed that it is possible to generate operation procedures in a practical amount of time for arbitrary quantum circuits. We also demonstrated that crosstalk can be avoided by shuttling and that the fidelity in that case is higher than when crosstalk is not avoided.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. N. Lee, R. Tsuchiya, G. Shinkai, Y. Kanno, T. Mine, T. Takahama, R. Mizokuchi, T. Kodera, D. Hisamoto, and H. Mizuno, “Enhancing electrostatic coupling in silicon quantum dot array by dual gate oxide thickness for large-scale integration,” Applied Physics Letters, vol. 116, no. 16, p. 162106, 04 2020. [Online]. Available: https://doi.org/10.1063/1.5141522
  2. N. Lee, R. Tsuchiya, Y. Kanno, T. Mine, Y. Sasago, G. Shinkai, R. Mizokuchi, J. Yoneda, T. Kodera, C. Yoshimura, S. Saito, D. Hisamoto, and H. Mizuno, “16 x 8 quantum dot array operation at cryogenic temperatures,” Japanese Journal of Applied Physics, vol. 61, no. SC, p. SC1040, feb 2022. [Online]. Available: https://dx.doi.org/10.35848/1347-4065/ac4c07
  3. H. Mizuno, “Quantum computing from hype to game changer,” in 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits).   IEEE, 2023, pp. 1–4.
  4. T. Sekiguchi, N. Sato, T. Utsugi, N. Lee, A. Miyamoto, T. Tomaru, S. Tanaka, C. Yoshimura, R. Ukai, and H. Mizuno, “A computing architecture using shuttling-qubit for a Si qubit array,” in Silicon Quantum Electronics Workshop (SiQEW) 2023), 2023.
  5. J. M. Boter, J. P. Dehollain, J. P. van Dijk, Y. Xu, T. Hensgens, R. Versluis, H. W. Naus, J. S. Clarke, M. Veldhorst, F. Sebastiano, and L. M. Vandersypen, “Spiderweb array: A sparse spin-qubit array,” Phys. Rev. Appl., vol. 18, p. 024053, Aug 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.18.024053
  6. A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard, and J. R. Petta, “Shuttling a single charge across a one-dimensional array of silicon quantum dots,” Nature Communications, vol. 10, no. 1, p. 1063, Mar 2019. [Online]. Available: https://doi.org/10.1038/s41467-019-08970-z
  7. V. Langrock, J. A. Krzywda, N. Focke, I. Seidler, L. R. Schreiber, and Ł. Cywiński, “Blueprint of a scalable spin qubit shuttle device for coherent mid-range qubit transfer in disordered si/sige/sio 2,” PRX Quantum, vol. 4, no. 2, p. 020305, 2023.
  8. R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen, M. Steudtner, N. K. Thomas, Z. R. Yoscovits, K. J. Singh, S. Wehner et al., “A crossbar network for silicon quantum dot qubits,” Science advances, vol. 4, no. 7, p. eaar3960, 2018.
  9. B. Buonacorsi, B. Shaw, and J. Baugh, “Simulated coherent electron shuttling in silicon quantum dots,” Phys. Rev. B, vol. 102, p. 125406, Sep 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.102.125406
  10. A. Zwerver, S. Amitonov, S. De Snoo, M. Mądzik, M. Rimbach-Russ, A. Sammak, G. Scappucci, and L. Vandersypen, “Shuttling an electron spin through a silicon quantum dot array,” PRX Quantum, vol. 4, no. 3, p. 030303, 2023.
  11. T. Fujita, T. A. Baart, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, “Coherent shuttle of electron-spin states,” npj Quantum Information, vol. 3, no. 1, p. 22, Jun 2017. [Online]. Available: https://doi.org/10.1038/s41534-017-0024-4
  12. T. Nakajima, M. R. Delbecq, T. Otsuka, S. Amaha, J. Yoneda, A. Noiri, K. Takeda, G. Allison, A. Ludwig, A. D. Wieck, X. Hu, F. Nori, and S. Tarucha, “Coherent transfer of electron spin correlations assisted by dephasing noise,” Nature Communications, vol. 9, no. 1, p. 2133, May 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-04544-7
  13. J. Yoneda, W. Huang, M. Feng, C. H. Yang, K. W. Chan, T. Tanttu, W. Gilbert, R. C. C. Leon, F. E. Hudson, K. M. Itoh, A. Morello, S. D. Bartlett, A. Laucht, A. Saraiva, and A. S. Dzurak, “Coherent spin qubit transport in silicon,” Nature Communications, vol. 12, no. 1, p. 4114, Jul 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-24371-7
  14. A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci, and S. Tarucha, “A shuttling-based two-qubit logic gate for linking distant silicon quantum processors,” Nature Communications, vol. 13, no. 1, p. 5740, Sep 2022. [Online]. Available: https://doi.org/10.1038/s41467-022-33453-z
  15. S. G. Philips, M. T. Mądzik, S. V. Amitonov, S. L. de Snoo, M. Russ, N. Kalhor, C. Volk, W. I. Lawrie, D. Brousse, L. Tryputen et al., “Universal control of a six-qubit quantum processor in silicon,” Nature, vol. 609, no. 7929, pp. 919–924, 2022.
  16. I. Heinz and G. Burkard, “High-fidelity cnot gate for spin qubits with asymmetric driving using virtual gates,” Physical Review B, vol. 105, no. 12, p. L121402, 2022.
  17. ——, “Crosstalk analysis for single-qubit and two-qubit gates in spin qubit arrays,” Physical Review B, vol. 104, no. 4, p. 045420, 2021.
  18. ——, “Crosstalk analysis for simultaneously driven two-qubit gates in spin qubit arrays,” Physical Review B, vol. 105, no. 8, p. 085414, 2022.
  19. T.-K. Hsiao, C. J. van Diepen, U. Mukhopadhyay, C. Reichl, W. Wegscheider, and L. M. Vandersypen, “Efficient orthogonal control of tunnel couplings in a quantum dot array,” Physical Review Applied, vol. 13, no. 5, p. 054018, 2020.
  20. R. E. Throckmorton and S. D. Sarma, “Crosstalk-and charge-noise-induced multiqubit decoherence in exchange-coupled quantum dot spin qubit arrays,” Physical Review B, vol. 105, no. 24, p. 245413, 2022.
  21. H. Fan, V. Roychowdhury, and T. Szkopek, “Optimal two-qubit quantum circuits using exchange interactions,” Physical Review A, vol. 72, no. 5, p. 052323, 2005.
  22. F. Martins, F. K. Malinowski, P. D. Nissen, E. Barnes, S. Fallahi, G. C. Gardner, M. J. Manfra, C. M. Marcus, and F. Kuemmeth, “Noise suppression using symmetric exchange gates in spin qubits,” Physical review letters, vol. 116, no. 11, p. 116801, 2016.
  23. M. Reed, B. Maune, R. Andrews, M. Borselli, K. Eng, M. Jura, A. Kiselev, T. Ladd, S. Merkel, I. Milosavljevic et al., “Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation,” Physical review letters, vol. 116, no. 11, p. 110402, 2016.
  24. T. Utsugi, N. Lee, R. Tsuchiya, T. Mine, R. Mizokuchi, J. Yoneda, T. Kodera, S. Saito, D. Hisamoto, and H. Mizuno, “Single-electron pump in a quantum dot array for silicon quantum computers,” Japanese Journal of Applied Physics, vol. 62, no. SC, p. SC1020, 2023.
  25. A. Matsuo and S. Yamashita, “Changing the gate order for optimal lnn conversion,” in Reversible Computation, A. De Vos and R. Wille, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 89–101.
  26. G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS ’19.   New York, NY, USA: Association for Computing Machinery, 2019, p. 1001–1014. [Online]. Available: https://doi.org/10.1145/3297858.3304023
  27. A. Bhattacharjee, C. Bandyopadhyay, R. Wille, R. Drechsler, and H. Rahaman, “A novel approach for nearest neighbor realization of 2d quantum circuits,” 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 305–310, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:51985889
  28. A. Lye, R. Wille, and R. Drechsler, “Determining the minimal number of swap gates for multi-dimensional nearest neighbor quantum circuits,” in The 20th Asia and South Pacific Design Automation Conference, 2015, pp. 178–183.
  29. A. Botea, A. Kishimoto, and R. Marinescu, “On the complexity of quantum circuit compilation,” in Symposium on Combinatorial Search, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:51881867
  30. D. Maslov, S. M. Falconer, and M. Mosca, “Quantum circuit placement,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 4, pp. 752–763, 2008.
  31. M. Y. Siraichi, V. F. d. Santos, C. Collange, and F. M. Q. Pereira, “Qubit allocation,” in Proceedings of the 2018 International Symposium on Code Generation and Optimization, ser. CGO 2018.   New York, NY, USA: Association for Computing Machinery, 2018, p. 113–125. [Online]. Available: https://doi.org/10.1145/3168822
  32. B. Tan and J. Cong, “Optimality study of existing quantum computing layout synthesis tools,” IEEE Transactions on Computers, vol. 70, no. 09, pp. 1363–1373, sep 2021.
  33. A. Shafaei, M. Saeedi, and M. Pedram, “Qubit placement to minimize communication overhead in 2d quantum architectures,” in 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), 2014, pp. 495–500.
  34. R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and R. Drechsler, “Look-ahead schemes for nearest neighbor optimization of 1d and 2d quantum circuits,” in 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), 2016, pp. 292–297.
  35. D. Bhattacharjee and A. Chattopadhyay, “Depth-optimal quantum circuit placement for arbitrary topologies,” 2017.
  36. C.-C. Lin, S. Sur-Kolay, and N. K. Jha, “Paqcs: Physical design-aware fault-tolerant quantum circuit synthesis,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 7, pp. 1221–1234, 2015.
  37. A. Farghadan and N. Mohammadzadeh, “Quantum circuit physical design flow for 2d nearest-neighbor architectures: Quantum circuit design flow,” International Journal of Circuit Theory and Applications, vol. 45, 03 2017.
  38. S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, “t|ket⟩: a retargetable compiler for nisq devices,” Quantum Science and Technology, vol. 6, no. 1, p. 014003, nov 2020. [Online]. Available: https://dx.doi.org/10.1088/2058-9565/ab8e92
  39. A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for mapping quantum circuits to the ibm qx architectures,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 7, pp. 1226–1236, 2018.
  40. A. Cross, “The ibm q experience and qiskit open-source quantum computing software,” in APS March meeting abstracts, vol. 2018, 2018, pp. L58–003.
  41. P. Zhu, Z. Guan, and X. Cheng, “A dynamic look-ahead heuristic for the qubit mapping problem of nisq computers,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 12, pp. 4721–4735, 2020.
  42. P. Zhu, S. Feng, and Z. Guan, “An iterated local search methodology for the qubit mapping problem,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 8, pp. 2587–2597, 2021.
  43. R. Wille, M. Saeedi, and R. Drechsler, “Synthesis of reversible functions beyond gate count and quantum cost,” arXiv preprint arXiv:1004.4609, 2010.
  44. A. Chakrabarti, S. Sur-Kolay, and A. Chaudhury, “Linear nearest neighbor synthesis of reversible circuits by graph partitioning,” arXiv preprint arXiv:1112.0564, 2011.
  45. M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits for linear nearest neighbor architectures,” Quantum Information Processing, vol. 10, pp. 355–377, 2011.
  46. Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima, “An efficient conversion of quantum circuits to a linear nearest neighbor architecture,” Quantum Info. Comput., vol. 11, no. 1, p. 142–166, jan 2011.
  47. A. Shafaei, M. Saeedi, and M. Pedram, “Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures,” in Proceedings of the 50th annual design automation conference, 2013, pp. 1–6.
  48. R. Wille, A. Lye, and R. Drechsler, “Optimal swap gate insertion for nearest neighbor quantum circuits,” in 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC).   IEEE, 2014, pp. 489–494.
  49. M. M. Rahman and G. W. Dueck, “Synthesis of linear nearest neighbor quantum circuits,” arXiv preprint arXiv:1508.05430, 2015.
  50. W. HATTORI and S. YAMASHITA, “Mapping a quantum circuit to 2d nearest neighbor architecture by changing the gate order,” IEICE Transactions on Information and Systems, vol. E102.D, no. 11, pp. 2127–2134, 2019.
  51. A. Matsuo, S. Yamashita, and D. J. Egger, “A sat approach to the initial mapping problem in swap gate insertion for commuting gates,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, p. 2022EAP1159, 2023.
  52. Y. Li, W. Liu, M. Li, and Y. Li, “Quantum circuit compilation for nearest-neighbor architecture based on reinforcement learning,” Quantum Information Processing, vol. 22, no. 8, p. 295, 2023.
  53. D. Ferrari, I. Tavernelli, and M. Amoretti, “Deterministic algorithms for compiling quantum circuits with recurrent patterns,” Quantum Information Processing, vol. 20, no. 6, p. 213, Jun 2021. [Online]. Available: https://doi.org/10.1007/s11128-021-03150-9
  54. D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact synthesis of elementary quantum gate circuits for reversible functions with don’t cares,” in 38th International Symposium on Multiple Valued Logic (ismvl 2008), 2008, pp. 214–219.
  55. S. Ashhab, N. Yamamoto, F. Yoshihara, and K. Semba, “Numerical analysis of quantum circuits for state preparation and unitary operator synthesis,” Phys. Rev. A, vol. 106, p. 022426, Aug 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.106.022426
  56. P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, “Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS ’19.   New York, NY, USA: Association for Computing Machinery, 2019, p. 1015–1029. [Online]. Available: https://doi.org/10.1145/3297858.3304075
  57. S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: A case for variability-aware policies for nisq-era quantum computers,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS ’19.   New York, NY, USA: Association for Computing Machinery, 2019, p. 987–999. [Online]. Available: https://doi.org/10.1145/3297858.3304007
  58. T. LeCompte, F. Qi, X. Yuan, N.-F. Tzeng, M. H. Najafi, and L. Peng, “Machine-learning-based qubit allocation for error reduction in quantum circuits,” IEEE Transactions on Quantum Engineering, vol. 4, pp. 1–14, 2023.
  59. P. Murali, D. C. Mckay, M. Martonosi, and A. Javadi-Abhari, “Software mitigation of crosstalk on noisy intermediate-scale quantum computers,” in Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS ’20.   New York, NY, USA: Association for Computing Machinery, 2020, p. 1001–1016. [Online]. Available: https://doi.org/10.1145/3373376.3378477
  60. Y. Ding, P. Gokhale, S. Lin, R. Rines, T. Propson, and F. T. Chong, “Systematic crosstalk mitigation for superconducting qubits via frequency-aware compilation,” in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).   Los Alamitos, CA, USA: IEEE Computer Society, oct 2020, pp. 201–214.
  61. A. A. Saki, R. O. Topaloglu, and S. Ghosh, “Muzzle the shuttle: efficient compilation for multi-trap trapped-ion quantum computers,” in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2022, pp. 322–327.
  62. J. Durandau, J. Wagner, F. Mailhot, C.-A. Brunet, F. Schmidt-Kaler, U. Poschinger, and Y. Bérubé-Lauzière, “Automated Generation of Shuttling Sequences for a Linear Segmented Ion Trap Quantum Computer,” Quantum, vol. 7, p. 1175, Nov. 2023. [Online]. Available: https://doi.org/10.22331/q-2023-11-08-1175
  63. M. Webber, S. Herbert, S. Weidt, and W. K. Hensinger, “Efficient qubit routing for a globally connected trapped ion quantum computer,” Advanced Quantum Technologies, vol. 3, no. 8, p. 2000027, 2020. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000027
  64. S. Brandhofer, I. Polian, and H. P. Büchler, “Optimal mapping for near-term quantum architectures based on rydberg atoms,” in 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD).   IEEE Press, 2021, p. 1–7. [Online]. Available: https://doi.org/10.1109/ICCAD51958.2021.9643490
  65. B. Tan, D. Bluvstein, M. D. Lukin, and J. Cong, “Qubit mapping for reconfigurable atom arrays,” in Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, ser. ICCAD ’22.   New York, NY, USA: Association for Computing Machinery, 2022. [Online]. Available: https://doi.org/10.1145/3508352.3549331
  66. L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceedings of the Theory and Practice of Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, ser. TACAS’08/ETAPS’08.   Berlin, Heidelberg: Springer-Verlag, 2008, p. 337–340.
  67. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https://doi.org/10.22331/q-2018-08-06-79
Citations (1)

Summary

We haven't generated a summary for this paper yet.