Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Huffman Coding using Synonymous Mapping (2401.14634v1)

Published 26 Jan 2024 in cs.IT and math.IT

Abstract: Semantic communication stands out as a highly promising avenue for future developments in communications. Theoretically, source compression coding based on semantics can achieve lower rates than Shannon entropy. This paper introduces a semantic Huffman coding built upon semantic information theory. By incorporating synonymous mapping and synonymous sets, semantic Huffman coding can achieve shorter average code lengths. Furthermore, we demonstrate that semantic Huffman coding theoretically have the capability to approximate semantic entropy. Experimental results indicate that, under the condition of semantic lossless, semantic Huffman coding exhibits clear advantages in compression efficiency over classical Huffman coding.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
  2. W. Weaver, “Recent contributions to the mathematical theory of communication,” ETC: a review of general semantics, pp. 261–281, 1953.
  3. R. Carnap, Y. Bar-Hillel et al., “An outline of a theory of semantic information,” 1952.
  4. J. Bao, P. Basu, M. Dean, C. Partridge, A. Swami, W. Leland, and J. A. Hendler, “Towards a theory of semantic communication,” in 2011 IEEE Network Science Workshop.   IEEE, 2011, pp. 110–117.
  5. A. De Luca and S. Termini, “A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory,” in Readings in Fuzzy Sets for Intelligent Systems.   Elsevier, 1993, pp. 197–202.
  6. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021.
  7. N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-channel coding of text,” in 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP).   IEEE, 2018, pp. 2326–2330.
  8. W. Zhang, K. Bai, S. Zeadally, H. Zhang, H. Shao, H. Ma, and V. C. Leung, “Deepma: End-to-end deep multiple access for wireless image transmission in semantic communication,” IEEE Transactions on Cognitive Communications and Networking, 2023.
  9. S. Wang, J. Dai, Z. Liang, K. Niu, Z. Si, C. Dong, X. Qin, and P. Zhang, “Wireless deep video semantic transmission,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 214–229, 2022.
  10. J. Dai, S. Wang, K. Tan, Z. Si, X. Qin, K. Niu, and P. Zhang, “Nonlinear transform source-channel coding for semantic communications,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 8, pp. 2300–2316, 2022.
  11. E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-channel coding for wireless image transmission,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 3, pp. 567–579, 2019.
  12. P. Zhang, X. Xu, C. Dong, K. Niu, H. Liang, Z. Liang, X. Qin, M. Sun, H. Chen, N. Ma et al., “Model division multiple access for semantic communications,” Frontiers of Information Technology & Electronic Engineering, pp. 1–12, 2023.
  13. K. Niu and P. Zhang, “A mathematical theory of semantic communication,” arXiv preprint arXiv:2401.13387, 2023.
  14. D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.
  15. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in Proceedings of the 40th annual meeting of the Association for Computational Linguistics, 2002, pp. 311–318.
  16. J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of naacL-HLT, vol. 1, 2019, p. 2.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com