Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CNG-SFDA:Clean-and-Noisy Region Guided Online-Offline Source-Free Domain Adaptation (2401.14587v3)

Published 26 Jan 2024 in cs.CV

Abstract: Domain shift occurs when training (source) and test (target) data diverge in their distribution. Source-Free Domain Adaptation (SFDA) addresses this domain shift problem, aiming to adopt a trained model on the source domain to the target domain in a scenario where only a well-trained source model and unlabeled target data are available. In this scenario, handling false labels in the target domain is crucial because they negatively impact the model performance. To deal with this problem, we propose to update cluster prototypes (i.e., centroid of each sample cluster) and their structure in the target domain formulated by the source model in online manners. In the feature space, samples in different regions have different pseudo-label distribution characteristics affected by the cluster prototypes, and we adopt distinct training strategies for these samples by defining clean and noisy regions: we selectively train the target with clean pseudo-labels in the clean region, whereas we introduce mix-up inputs representing intermediate features between clean and noisy regions to increase the compactness of the cluster. We conducted extensive experiments on multiple datasets in online/offline SFDA settings, whose results demonstrate that our method, CNG-SFDA, achieves state-of-the-art for most cases. Code is available at https://github.com/hyeonwoocho7/CNG-SFDA.

Summary

We haven't generated a summary for this paper yet.