2000 character limit reached
Discrete Approximation of Optimal Transport on Compact Spaces (2401.14538v1)
Published 25 Jan 2024 in math.NA, cs.NA, and math.FA
Abstract: We investigate the approximation of Monge--Kantorovich problems on general compact metric spaces, showing that optimal values, plans and maps can be effectively approximated via a fully discrete method. First we approximate optimal values and plans by solving finite dimensional discretizations of the corresponding Kantorovich problem. Then we approximate optimal maps by means of the usual barycentric projection or by an analogous procedure available in general spaces without a linear structure. We prove the convergence of all these approximants in full generality and show that our convergence results are sharp.
- Optimal transportation, topology and uniqueness. Bull. Math. Sci., 1(1):13–32, 2011.
- Network Flows: Theory, Algorithms, and Applications. Prentice–Hall, 1993.
- L. Ambrosio. Lecture Notes on Optimal Transport Problems. In Mathematical Aspects of Evolving Interfaces, pages 1–52. Springer, 2003.
- Lectures on Optimal Transport, volume 130 of Unitext. Springer, 2021.
- Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser, 2005.
- T. M. Apostol. Mathematical Analysis. Addison-Wesley, 2nd edition, 1974.
- S. Bartels and S. Hertzog. Error Bounds for Discretized Optimal Transport and Its Reliable Efficient Numerical Solution. In NCDPS. Springer, 2022.
- P. Bernard and B. Buffoni. Optimal mass transportation and Mather theory. J. Eur. Math. Soc., 9(1):85–121, 2007.
- J. Bertrand. Existence and uniqueness of optimal maps on Alexandrov spaces. Adv. Math., 219(3):838–851, 2008.
- D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1997.
- P. Billingsley. Convergence of Probability Measures. Wiley, 2nd edition, 1999.
- The Mathematical Theory of Finite Element Methods. Springer, 3rd edition, 2008.
- Assignment Problems. SIAM, 2012.
- L. A. Caffarelli. Allocation maps with general cost functions. In Partial Differential Equations and Applications, pages 29–35. Marcel Dekker, 1996.
- G. Carlier. Duality and existence for a class of mass transportation problems and economic applications. In Adv. Math. Econ. 5, pages 1–21. Springer, 2003.
- F. Cavalletti. Monge problem in metric measure spaces with Riemannian curvature-dimension condition. Nonlinear Anal., 99:136–151, 2014.
- M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information processing systems, 26, 2013.
- G. De Philippis and A. Figalli. The Monge-Ampère equation and its link to optimal transportation. Bull. Am. Math. Soc., New Ser., 51(4):527–580, 2014.
- G. De Philippis and A. Figalli. Partial regularity for optimal transport maps. Publ. Math. Inst. Hautes Études Sci., 121:81–112, 2015.
- Rates of estimation of optimal transport maps using plug-in estimators via barycentric projections. Advances in Neural Information Processing Systems, 34:29736–29753, 2021.
- Numerical enclosures of the optimal cost of the Kantorovitch’s mass transportation problem. Computational Optimization and Applications, 63(3):855–873, 2016.
- Measure Theory and Fine Properties of Functions. CRC Press, 2nd revised edition, 2015.
- A. Fathi and A. Figalli. Optimal transportation on non-compact manifolds. Isr. J. Math., 175:1–59, 2010.
- H. Federer. Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag, 1969.
- A. Figalli. Existence, uniqueness, and regularity of optimal transport maps. SIAM J. Math. Anal., 39(1):126–137, 2007.
- A. Figalli. Regularity properties of optimal maps between nonconvex domains in the plane. Comm. Partial Differential Equations, 35(3):465–479, 2010.
- A. Figalli and F. Glaudo. An invitation to optimal transport, Wasserstein distances, and gradient flows. EMS Textb. Math. EMS, 2021.
- A. Figalli and Y.-H. Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete Contin. Dyn. Syst., 28(2):559–565, 2010.
- Robust statistics on Riemannian manifolds via the geometric median. In CVPR. IEEE, 2008.
- W. Gangbo. The Monge mass transfer problem and its applications. In Contemporary Mathematics 226, pages 79–104. AMS, 1999.
- W. Gangbo and R. J. McCann. Optimal maps in Monge’s mass transport problem. C. R. Acad. Sci., Paris, Sér. I, 321(12):1653–1658, 1995.
- W. Gangbo and R. J. McCann. The geometry of optimal transportation. Acta Mathematica, 177(2):113–161, 1996.
- S. Gerber and M. Maggioni. Multiscale strategies for computing optimal transport. J. Mach. Learn. Res., 18:Paper No. 72, 32, 2017.
- N. Gigli. Optimal maps in non branching spaces with Ricci curvature bounded from below. Geom. Funct. Anal., 22(4):990–999, 2012.
- E. Hansen and G. Walster. Global Optimization Using Interval Analysis: Revised and Expanded. CRC Press, 2003.
- H. L. Lebesgue. Leçons sur l’intégration et la recherche des fonctions primitives. Gauthier-Villars, 1904.
- V. Levin. Abstract cyclical monotonicity and Monge solutions for the general Monge-Kantorovich problem. Set-Valued Anal., 7(1):7–32, 1999.
- W. Li and R. H. Nochetto. Quantitative stability and error estimates for optimal transport plans. IMA J. Numer. Anal., 41(3):1941–1965, 2021.
- D. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 2008.
- Regularity of potential functions of the optimal transportation problem. Archive for Rational Mechanics and Analysis, 177(2):151–183, 2005.
- Plugin estimation of smooth optimal transport maps. arXiv:2107.12364v2 [math.ST]
- R. J. McCann. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal., 11(3):589–608, 2001.
- Rectifiability of optimal transportation plans. Can. J. Math., 64(4):924–933, 2012.
- R. E. Moore. Methods and Applications of Interval Analysis. Society for Industrial and Applied Mathematics, 1979.
- A. M. Oberman and Y. Ruan. Solution of optimal transportation problems using a multigrid linear programming approach. Journal of Computational Mathematics, 38(6):937–956, 2020.
- G. Peyré and M. Cuturi. Computational optimal transport. Found. Trends Mach. Learn., 11(5-6):355–607, 2019.
- Full characterization of optimal transport plans for concave costs. Discrete and Continuous Dynamical Systems, 35(12):6113–6132, 2015.
- F. Plastria. The Weiszfeld algorithm: Proof, Amendments, and Extensions. In Foundations of Location Analysis, pages 357–389. Springer, 2011.
- A. Pratelli. On the equality between Monge’s infimum and Kantorovich’s minimum in optimal mass transportation. Ann. Inst. Henri Poincaré Probab. Stat., 43(1):1–13, 2007.
- T. Rajala and T. Schultz. Optimal transport maps on Alexandrov spaces revisited. Manuscr. Math., 169(1-2):1–18, 2022.
- F. Santambrogio. Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and Their Applications. Springer, 2015.
- B. Schmitzer. A sparse multiscale algorithm for dense optimal transport. Journal of Mathematical Imaging and Vision, 56(2):238–259, Oct 2016.
- B. Schmitzer and C. Schnörr. A Hierarchical Approach to Optimal Transport. In SSVMCV, pages 452–464. Springer, 2013.
- C. Villani. Topics in Optimal Transportation. AMS, 2003.
- C. Villani. Optimal Transport: Old and New. Springer, 2008.
- E. Weiszfeld. Sur le point pour lequel la somme des distances de n𝑛nitalic_n points donnés est minimum. Tôhoku Math. J., 43:355–386, 1937.
- L. Yang. Riemannian median and its estimation. LMS Journal of Computation and Mathematics, 13:461–479, 2010.