Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Precision Mars Entry Navigation with Atmospheric Density Adaptation via Neural Networks (2401.14411v2)

Published 17 Jan 2024 in cs.LG, cs.SY, eess.SY, and stat.AP

Abstract: Spacecraft entering Mars require precise navigation algorithms capable of accurately estimating the vehicle's position and velocity in dynamic and uncertain atmospheric environments. Discrepancies between the true Martian atmospheric density and the onboard density model can significantly impair the performance of spacecraft entry navigation filters. This work introduces a new approach to online filtering for Martian entry using a neural network to estimate atmospheric density and employing a consider analysis to account for the uncertainty in the estimate. The network is trained on an exponential atmospheric density model, and its parameters are dynamically adapted in real time to account for any mismatch between the true and estimated densities. The adaptation of the network is formulated as a maximum likelihood problem by leveraging the measurement innovations of the filter to identify optimal network parameters. Within the context of the maximum likelihood approach, incorporating a neural network enables the use of stochastic optimizers known for their efficiency in the machine learning domain. Performance comparisons are conducted against two online adaptive approaches, covariance matching and state augmentation and correction, in various realistic Martian entry navigation scenarios. The results show superior estimation accuracy compared to other approaches, and precise alignment of the estimated density with a broad selection of realistic Martian atmospheres sampled from perturbed Mars-GRAM data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Zanetti, R., “Advanced Navigation Algorithms for Precision Landing,” Ph.D. thesis, The University of Texas at Austin, 2007.
  2. Tracy, K., Falcone, G., and Manchester, Z., “Robust Entry Guidance with Atmospheric Adaptation,” Proceedings of the AIAA SciTech Forum, National Harbor, MD, 2023.
  3. Putnam, Z. R., and Braun, R. D., “Drag-Modulation Flight-Control System Options for Planetary Aerocapture,” Journal of Spacecraft and Rockets, Vol. 51, No. 1, 2014, pp. 139–150.
  4. Liu, G., England, S. L., Lillis, R. J., Withers, P., Mahaffy, P. R., Rowland, D. E., Elrod, M., Benna, M., Kass, D. M., Janches, D., and Jakosky, B., “Thermospheric Expansion Associated With Dust Increase in the Lower Atmosphere on Mars Observed by MAVEN/NGIMS,” Geophysical Research Letters, Vol. 45, No. 7, 2018, pp. 2901–2910.
  5. Braun, R. D., and Manning, R. M., “Mars exploration entry, descent and landing challenges,” 2006 IEEE Aerospace Conference, Big Sky, Montana, 2006.
  6. Lévesque, J., “Advanced Navigation and Guidance for High-Precision Planetary Landing on Mars,” Ph.D. thesis, University of Sherbrooke, 2006.
  7. Zanetti, R., and Bishop, R., “Precision Entry Navigation Dead-Reckoning Error Analysis: Theoretical Foundations of the Discrete-Time Case,” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Mackinac Island, MI, 2007.
  8. Lou, T., Fu, H., Zhang, Y., and Wang, Z., “Consider unobservable uncertain parameters using radio beacon navigation during Mars entry,” Advances in Space Research, Vol. 55, No. 4, 2015, pp. 1038–1050.
  9. Jiang, X., Li, S., and Huang, X., “Radio/FADS/IMU integrated navigation for Mars entry,” Advances in Space Research, Vol. 61, No. 5, 2018, pp. 1342–1358.
  10. Zewge, N. S., and Bang, H., “A Distributionally Robust Fusion Framework for Autonomous Multisensor Spacecraft Navigation during Entry Phase of Mars Entry, Descent, and Landing,” Remote Sensing, Vol. 15, No. 1139, 2023.
  11. Marcus, C., Setterfield, T., and Zanetti, R., “Variable Resolution Quadtree Mapping for Planetary Landing Using Planar Elements,” Proceedings of the AAS Guidance and Control Conference, Breckenridge, CO, 2022.
  12. Marcus, C., and Zanetti, R., “MHN-SLAM for Planetary Landing,” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, 2023.
  13. Dutta, S., Braun, R., Russel, R., Striepe, S., and Clark, I., “Comparison of Statistical Estimation Techniques for Mars Entry, Descent, and Landing Reconstruction,” Journal of Spacecraft and Rockets, Vol. 50, No. 6, 2013, pp. 1207–1221.
  14. Dutta, S., Braun, R., and Karlgaard, C., “Uncertainty Quantification for Mars Entry, Descent, and Landing Reconstruction Using Adaptive Filtering,” Journal of Spacecraft and Rockets, Vol. 51, No. 3, 2014, pp. 967–977.
  15. Myers, K., and Tapley, B., “Adaptive Sequential Estimation with Unknown Noise Statistics,” IEEE Transactions on Automatic Control, Vol. 21, No. 4, 1976, pp. 520–523.
  16. Dutta, S., and Braun, R., “Statistical Entry, Descent, and Landing Performance Reconstruction of the Mars Science Laboratory,” Proceedings of the AIAA Atmospheric Flight Mechanics Conference, National Harbor, MD, 2014.
  17. Wagner, J. J., Wilhite, A. W., Stanley, D. O., and Powell, R. W., “An Adaptive Real Time Atmospheric Prediction Algorithm for Entry Vehicles,” Proceedings of the 3rd AIAA Atmospheric Space Environments Conference, Honolulu, Hawaii, 2011.
  18. Amato, D., and McMahon, J. W., “Deep Learning Method for Martian Atmosphere Reconstruction,” Journal of Aerospace Information Systems, Vol. 18, 2021, pp. 728–738.
  19. Roelke, E., McMahon, J. W., Braun, R. D., and Hattis, P. D., “Atmospheric Density Estimation Techniques for Aerocapture,” Journal of Spacecraft and Rockets, Vol. 60, 2023, pp. 942–956.
  20. Gazarik, M. J., Wright, M. J., Little, A., Cheatwood, F. M., Herath, J. A., Munk, M. M., Novak, F. J., and Martinez, E. R., “Overview of the MEDLI Project,” Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, 2008.
  21. Hwang, H., Bose, D., White, T., Wright, H., Schoenenberger, M., Kuhl, C., Trombetta, D., Santos, J., Oishi, T., Karlgaard, C., and et al, “Mars 2020 Entry, Descent and Landing Instrumentation 2 (MEDLI2),” Proceedings of the 46th AIAA Thermophysics Conference, Washington DC, USA, 2016.
  22. White, T., Mahzari, M., Miller, R., Tang, C., Monk, J., Santos, J., Karlgaard, C., Alpert, H., Wright, H., and Kuhl, C., “Mars Entry Instrumentation Flight Data and Mars 2020 Entry Environments,” Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, 2022.
  23. Braun, R. D., and Manning, R. M., “Statistical Reconstruction of Mars Entry, Descent, and Landing Trajectories and Atmospheric Profiles,” Proceedings of the AIAA SPACE 2007 Conference & Exposition, Long Beach, California, 2007.
  24. Sutton, K., and Randolph A. Graves, J., “A General Stagnation-Point Convective-Heating Equation for Arbitrary Gas Mixtures,” Tech. rep., NASA Langley Research Center, 1971.
  25. Benito, J., and Mease, K. D., “Reachable and Controllable Sets for Planetary Entry and Landing,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 3, 2010, pp. 641–654.
  26. Mehra, R., “Approaches to adaptive filtering,” IEEE Transactions on Automatic Control, Vol. 17, No. 5, 1972, pp. 693–698.
  27. Marschke, J., Crassidis, J., and Lam, Q., “Multiple Model Adaptive Estimation for Inertial Navigation During Mars Entry,” Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawai, 2008.
  28. Kingma, D. P., and Ba, J., “Adam: A Method for Stochastic Optimization,” Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, 2017.
  29. Zanetti, R., and DeMars, K. J., “Joseph Formulation of Unscented and Quadrature Filters with Application to Consider States,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 6, 2013, pp. 1860–1864.
  30. Stauch, J., and Jah, M., “Unscented Schmidt–Kalman Filter Algorithm,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 1, 2015, pp. 117–123.
  31. Julier, S., and Uhlmann, J., “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, Vol. 92, No. 3, 2004, pp. 401–422.
  32. Zanetti, R., and D’Souza, C., “Recursive Implementations of the Consider Filter,” Journal of the Astronautical Sciences, Vol. 60, No. 3, 2013, p. 672–685.
  33. Way, D. W., Powell, R. W., Chen, A., Steltzner, A. D., Martin, A. M. S., Burkhart, P. D., and Mendeck, G. F., “Mars Science Laboratory: Entry, Descent, and Landing System Performance,” 2006 IEEE Aerospace Conference, Big Sky, Montana, 2006.
  34. Lévesque, J., and de Lafontaine, J., “Innovative Navigation Schemes for State and Parameter Estimation During Mars Entry,” Journal of Guidance Control and Dynamics, Vol. 30, No. 1, 2007, pp. 169–184.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets