Variational Neural and Tensor Network Approximations of Thermal States (2401.14243v2)
Abstract: We introduce a variational Monte Carlo algorithm for approximating finite-temperature quantum many-body systems, based on the minimization of a modified free energy. This approach directly approximates the state at a fixed temperature, allowing for systematic improvement of the ansatz expressiveness without accumulating errors from iterative imaginary time evolution. We employ a variety of trial states -- both tensor networks as well as neural networks -- as variational Ans\"atze for our numerical optimization. We benchmark and compare different constructions in the above classes, both for one- and two-dimensional problems, with systems made of up to $N=100$ spins. Our results demonstrate that while restricted Boltzmann machines show limitations, string bond tensor network states exhibit systematic improvements with increasing bond dimensions and the number of strings.
- W. von der Linden, Physics Reports 220, 53 (1992).
- A. W. Sandvik, AIP Conference Proceedings 10.1063/1.3518900 (2010).
- M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 170201 (2005).
- P. Henelius and A. W. Sandvik, Phys. Rev. B 62, 1102 (2000).
- U. Schollwöck, Ann. Phys. 326, 96 (2011).
- G. Carleo and M. Troyer, Science 355, 602 (2016).
- M. B. Hastings, Phys. Rev. B 73, 085115 (2006).
- F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Phys. Rev. Lett. 93, 207204 (2004).
- V. Murg, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 95, 057206 (2005).
- A. E. Feiguin and S. R. White, Phys. Rev. B 72, 220401(R) (2005).
- S. R. White, Phys. Rev. Lett. 102, 190601 (2009).
- E. M. Stoudenmire and S. R. White, New J. Phys. 12, 055026 (2010).
- F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066 (2004).
- M. Lubasch, J. I. Cirac, and M.-C. Bañuls, Phys. Rev. B 90, 064425 (2014a).
- M. Lubasch, J. I. Cirac, and M.-C. Bañuls, New J. Phys. 16, 033014 (2014b).
- P. Czarnik, L. Cincio, and J. Dziarmaga, Phys. Rev. B 86, 245101 (2012).
- P. Czarnik, J. Dziarmaga, and P. Corboz, Phys. Rev. B 99, 035115 (2019).
- D. Poilblanc, M. Mambrini, and F. Alet, SciPost Phys. 10, 019 (2021).
- J. Thibaut, T. Roscilde, and F. Mezzacapo, Phys. Rev. B 100, 155148 (2019).
- K. Choo, T. Neupert, and G. Carleo, Phys. Rev. B 100, 125124 (2019).
- Y. Nomura and M. Imada, Phys. Rev. X 11, 031034 (2021).
- A. Chen and M. Heyl, arXiv:2302.01941 (2023).
- D.-L. Deng, X. Li, and S. Das Sarma, Phys. Rev. X 7, 021021 (2017a).
- D.-L. Deng, X. Li, and S. Das Sarma, Phys. Rev. B 96, 195145 (2017b).
- X. Gao and L.-M. Duan, Nat. Commun. 8, 662 (2017).
- S. Lu, X. Gao, and L.-M. Duan, Phys. Rev. B 99, 155136 (2019).
- Y. Huang and J. E. Moore, Phys. Rev. Lett. 127, 170601 (2021).
- O. Sharir, A. Shashua, and G. Carleo, Phys. Rev. B 106, 205136 (2022).
- G. Torlai and R. G. Melko, Phys. Rev. Lett. 120, 240503 (2018).
- M. J. Hartmann and G. Carleo, Phys. Rev. Lett. 122, 250502 (2019).
- A. Nagy and V. Savona, Phys. Rev. Lett. 122, 250501 (2019).
- N. Yoshioka and R. Hamazaki, Phys. Rev. B 99, 214306 (2019).
- F. Vicentini, R. Rossi, and G. Carleo, arXiv:2206.13488 (2022a).
- Y. Nomura, N. Yoshioka, and F. Nori, Phys. Rev. Lett. 127, 060601 (2021).
- J. Claes and B. K. Clark, Phys. Rev. B 95, 205109 (2017).
- W. Kadow, F. Pollmann, and M. Knap, Phys. Rev. B 107, 205106 (2023).
- D. Hendry, H. Chen, and A. Feiguin, Phys. Rev. B 106, 165111 (2022).
- J. Nys, Z. Denis, and G. Carleo, arXiv:2309.07063 (2023).
- R. P. Feynman, Difficulties in Applying the Variational Principle to Quantum Field Theories, in Variational Calculations In Quantum Field Theory (WORLD SCIENTIFIC, 1988) pp. 28–40.
- T. Shi, E. Demler, and J. I. Cirac, Phys. Rev. Lett. 125, 180602 (2020).
- Á. M. Alhambra and J. I. Cirac, PRX Quantum 2, 040331 (2021).
- G. E. Hinton, Neural Computation 14, 1771 (2002).
- I. Glasser, N. Pancotti, and J. I. Cirac, IEEE Access 8, 68169 (2020).
- More details are given in the Supplemental Material.
- Additional numerical results are shown in the Supplemental Material.
- G. Montufar and N. Ay, arXiv:1005.1593 (2010).
- G. Carleo, Y. Nomura, and M. Imada, Nat. Commun. 9, 5322 (2018).
- H. W. J. Blöte and Y. Deng, Phys. Rev. E 66, 066110 (2002).
- F. Mezzacapo and J. I. Cirac, New J. Phys. 12, 103039 (2010).
- A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat Commun 4, 2864 (2013).
- M. Fishman, S. White, and E. Stoudenmire, SciPost Phys. Codebases , 4 (2022).
- F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, Cambridge, 2017).
- S. Hochreiter and J. Schmidhuber, Neural Comput. 9, 1735 (1997).
- D. P. Kingma and J. Ba, arXiv:1412.6980 (2017).