Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new analysis of empirical interpolation methods and Chebyshev greedy algorithms (2401.13985v1)

Published 25 Jan 2024 in math.NA and cs.NA

Abstract: We present new convergence estimates of generalized empirical interpolation methods in terms of the entropy numbers of the parametrized function class. Our analysis is transparent and leads to sharper convergence rates than the classical analysis via the Kolmogorov n-width. In addition, we also derive novel entropy-based convergence estimates of the Chebyshev greedy algorithm for sparse n-term nonlinear approximation of a target function. This also improves classical convergence analysis when corresponding entropy numbers decay fast enough.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com