Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Don't Push the Button! Exploring Data Leakage Risks in Machine Learning and Transfer Learning (2401.13796v2)

Published 24 Jan 2024 in cs.LG and cs.AI

Abstract: Machine Learning (ML) has revolutionized various domains, offering predictive capabilities in several areas. However, with the increasing accessibility of ML tools, many practitioners, lacking deep ML expertise, adopt a "push the button" approach, utilizing user-friendly interfaces without a thorough understanding of underlying algorithms. While this approach provides convenience, it raises concerns about the reliability of outcomes, leading to challenges such as incorrect performance evaluation. This paper addresses a critical issue in ML, known as data leakage, where unintended information contaminates the training data, impacting model performance evaluation. Users, due to a lack of understanding, may inadvertently overlook crucial steps, leading to optimistic performance estimates that may not hold in real-world scenarios. The discrepancy between evaluated and actual performance on new data is a significant concern. In particular, this paper categorizes data leakage in ML, discussing how certain conditions can propagate through the ML workflow. Furthermore, it explores the connection between data leakage and the specific task being addressed, investigates its occurrence in Transfer Learning, and compares standard inductive ML with transductive ML frameworks. The conclusion summarizes key findings, emphasizing the importance of addressing data leakage for robust and reliable ML applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Andrea Apicella (13 papers)
  2. Francesco Isgrò (13 papers)
  3. Roberto Prevete (17 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets