Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enabling Seamless Data Security, Consensus, and Trading in Vehicular Networks (2401.13630v1)

Published 24 Jan 2024 in cs.DC

Abstract: Cooperative driving is an emerging paradigm to enhance the safety and efficiency of autonomous vehicles. To ensure successful cooperation, road users must reach a consensus for making collective decisions, while recording vehicular data to analyze and address failures related to such agreements. This data has the potential to provide valuable insights into various vehicular events, while also potentially improving accountability measures. Furthermore, vehicles may benefit from the ability to negotiate and trade services among themselves, adding value to the cooperative driving framework. However, the majority of proposed systems aiming to ensure data security, consensus, or service trading, lack efficient and thoroughly validated mechanisms that consider the distinctive characteristics of vehicular networks. These limitations are amplified by a dependency on the centralized support provided by the infrastructure. Furthermore, corresponding mechanisms must diligently address security concerns, especially regarding potential malicious or misbehaving nodes, while also considering inherent constraints of the wireless medium. We introduce the Verifiable Event Extension (VEE), an applicational extension designed for Intelligent Transportation System (ITS) messages. The VEE operates seamlessly with any existing standardized vehicular communications protocol, addressing crucial aspects of data security, consensus, and trading with minimal overhead. To achieve this, we employ blockchain techniques, Byzantine fault tolerance (BFT) consensus protocols, and cryptocurrency-based mechanics. To assess our proposal's feasibility and lightweight nature, we employed a hardware-in-the-loop setup for analysis. Experimental results demonstrate the viability and efficiency of the VEE extension in overcoming the challenges posed by the distributed and opportunistic nature of wireless vehicular communications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. M. Arif, G. Wang, M. Zakirul Alam Bhuiyan, T. Wang, and J. Chen, “A survey on security attacks in vanets: Communication, applications and challenges,” Vehicular Communications, vol. 19, p. 100179, 2019.
  2. K. Böhm, T. Kubjatko, D. Paula, and H.-G. Schweiger, “New developments on edr (event data recorder) for automated vehicles,” Open Engineering, vol. 10, no. 1, pp. 140–146, 2020.
  3. N. Cheng, F. Lyu, J. Chen, W. Xu, H. Zhou, S. Zhang, and X. Shen, “Big data driven vehicular networks,” IEEE Network, vol. 32, no. 6, pp. 160–167, 2018.
  4. Z. Ying, M. Ma, Z. Zhao, X. Liu, and J. Ma, “A reputation-based leader election scheme for opportunistic autonomous vehicle platoon,” IEEE Transactions on Vehicular Technology, vol. 71, no. 4, pp. 3519–3532, 2022.
  5. D. Suo and S. E. Sarma, “Proof-of-travel: A protocol for trustworthy v2i communication and incentive designs,” in 2020 IEEE Vehicular Networking Conference (VNC), pp. 1–4, 2020.
  6. P. C. Bartolomeu, E. Vieira, and J. Ferreira, “Pay as you go: A generic crypto tolling architecture,” IEEE Access, vol. 8, pp. 196212–196222, 2020.
  7. M. Shurrab, S. Singh, H. Otrok, R. Mizouni, V. Khadkikar, and H. Zeineldin, “An efficient vehicle-to-vehicle (v2v) energy sharing framework,” IEEE Internet of Things Journal, vol. 9, no. 7, pp. 5315–5328, 2022.
  8. X. Sun and Y. Yin, “An auction mechanism for platoon leader determination in single-brand cooperative vehicle platooning,” Economics of Transportation, vol. 28, p. 100233, 2021.
  9. E. Vieira, J. Almeida, J. Ferreira, and P. C. Bartolomeu, “VERCO: A privacy and data-centric architecture for verifiable cooperative maneuvers,” Vehicular Communications, vol. 42, p. 100614, 2023.
  10. ETSI, “Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Facilities layer protocols and communication requirements for infrastructure services,” Tech. Rep. I TS 103 301 V1.3.1, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, Feb. 2020.
  11. ETSI, “Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service ,” Tech. Rep. EN 302 637-2 V1.4.1, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, Jan. 2019.
  12. T. Renzler, M. Stolz, and D. Watzenig, “Looking into the path future: Extending cams for cooperative event handling,” in 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), pp. 1–5, 2020.
  13. ETSI, “Intelligent Tranport Systems (ITS); Vehicular Communications; Manoeuvre Coordination Service (MCS); Pre-standardisation study.,” Tech. Rep. TR 103 578 V0.0.13, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, July 2023.
  14. L. Hobert, A. Festag, I. Llatser, L. Altomare, F. Visintainer, and A. Kovacs, “Enhancements of v2x communication in support of cooperative autonomous driving,” Comm. Mag., vol. 53, p. 64–70, dec 2015.
  15. ETSI, “Intelligent Transport System (ITS); Vehicular Communications; Basic Set of Applications; Collective Perception Service; Release 2,” Tech. Rep. TS 103 324 V2.1.1, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, June 2023.
  16. H.-J. Günther, R. Riebl, L. Wolf, and C. Facchi, “Collective perception and decentralized congestion control in vehicular ad-hoc networks,” in 2016 IEEE Vehicular Networking Conference (VNC), pp. 1–8, 2016.
  17. M. Rondinone, T. Walter, R. Blokpoel, and J. Schindler, “V2x communications for infrastructure-assisted automated driving,” in 2018 IEEE 19th International Symposium on ”A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), pp. 14–19, 2018.
  18. S. Loewen, F. Klingler, C. Sommer, and F. Dressler, “Backwards compatible extension of cams/denms for improved bike safety on the road,” in 2017 IEEE Vehicular Networking Conference (VNC), pp. 43–44, 2017.
  19. A. Correa, R. Alms, J. Gozalvez, M. Sepulcre, M. Rondinone, R. Blokpoel, L. Lücken, and G. Thandavarayan, “Infrastructure support for cooperative maneuvers in connected and automated driving,” in 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 20–25, 2019.
  20. M. B. Mertens, J. Müller, R. Dehler, M. Klimke, M. Maier, S. Gherekhloo, B. Völz, R.-W. Henn, and M. Buchholz, “An extended maneuver coordination protocol with support for urban scenarios and mixed traffic,” in 2021 IEEE Vehicular Networking Conference (VNC), pp. 32–35, 2021.
  21. D. Maksimovski, C. Facchi, and A. Festag, “Priority maneuver (prima) coordination for connected and automated vehicles,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), p. 1083–1089, IEEE Press, 2021.
  22. L. Mendiboure, M. A. Chalouf, and F. Krief, “Survey on blockchain-based applications in internet of vehicles,” Computers & Electrical Engineering, vol. 84, p. 106646, 2020.
  23. J. Grover, “Security of vehicular ad hoc networks using blockchain: A comprehensive review,” Vehicular Communications, vol. 34, p. 100458, 2022.
  24. L. Peng, W. Feng, Z. Yan, Y. Li, X. Zhou, and S. Shimizu, “Privacy preservation in permissionless blockchain: A survey,” Digital Communications and Networks, vol. 7, no. 3, pp. 295–307, 2021.
  25. B. Häfner, V. Bajpai, J. Ott, and G. A. Schmitt, “A survey on cooperative architectures and maneuvers for connected and automated vehicles,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 380–403, 2022.
  26. H. Liu, C.-W. Lin, E. Kang, S. Shiraishi, and D. M. Blough, “A byzantine-tolerant distributed consensus algorithm for connected vehicles using proof-of-eligibility,” in Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWIM ’19, (New York, NY, USA), p. 225–234, Association for Computing Machinery, 2019.
  27. Z. Cao, J. Kong, U. Lee, M. Gerla, and Z. Chen, “Proof-of-relevance: Filtering false data via authentic consensus in vehicle ad-hoc networks,” in IEEE INFOCOM Workshops 2008, pp. 1–6, 2008.
  28. O. Sawade, M. Schulze, and I. Radusch, “Robust communication for cooperative driving maneuvers,” IEEE Intelligent Transportation Systems Magazine, vol. 10, no. 3, pp. 159–169, 2018.
  29. H. Moniz, N. F. Neves, and M. Correia, “Turquois: Byzantine consensus in wireless ad hoc networks,” in 2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN), pp. 537–546, 2010.
  30. E. Vieira, J. Almeida, J. Ferreira, and P. C. Bartolomeu, “Safeguarding Cooperative Maneuver Information with Practical Byzantine Fault Tolerance,” in 2023 53nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2023.
  31. M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACM Transactions on Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461, 2002.
  32. A. Adavoudi Jolfaei, A. Boualouache, A. Rupp, S. Schiffner, and T. Engel, “A survey on privacy-preserving electronic toll collection schemes for intelligent transportation systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 9, pp. 8945–8962, 2023.
  33. X. Deng and T. Gao, “Electronic payment schemes based on blockchain in vanets,” IEEE Access, vol. 8, pp. 38296–38303, 2020.
  34. R. Jabbar, N. Fetais, M. Kharbeche, M. Krichen, K. Barkaoui, and M. Shinoy, “Blockchain for the internet of vehicles: How to use blockchain to secure vehicle-to-everything (v2x) communication and payment?,” IEEE Sensors Journal, vol. 21, no. 14, pp. 15807–15823, 2021.
  35. S. Popov, “The tangle,” Tech. Rep. 3, IOTA Foundation, 2018.
  36. SAE International, “V2X-Based Fee Collection,” Tech. Rep. J3217-202206, SAE International, Warrendale, Pennsylvania, United States, June 2022.
  37. ETSI, “Intelligent Transport Systems (ITS); Communications Architecture,” Tech. Rep. EN 302 665 V1.1.1, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, Sept. 2010.
  38. IEEE, “IEEE Guide for Wireless Access in Vehicular Environments (WAVE) Architecture,” Tech. Rep. 1609.0-2019, Institute of Electrical and Electronics Engineers (IEEE), New Jersey, United States, Apr. 2019.
  39. ETSI, “Intelligent Transport Systems (ITS); Users and applications requirements; Part 1: Facility layer structure, functional requirements and specifications,” Tech. Rep. TS 102 894-1 V1.1.1, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, Aug. 2013.
  40. ETSI, “Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service ,” Tech. Rep. EN 302 637-3 V1.3.1, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, Apr. 2019.
  41. SAE International, “V2X Communications Message Set Dictionary,” Tech. Rep. J2735-202007, SAE International, Warrendale, Pennsylvania, United States, July 2020.
  42. IEEE, “IEEE Standard for Data Storage Systems for Automated Driving,” Tech. Rep. 1616.1-2023, Institute of Electrical and Electronics Engineers (IEEE), New Jersey, United States, Aug. 2023.
  43. R. Gallager, Discrete Stochastic Processes. The Springer International Series in Engineering and Computer Science, Springer US, 2012.
  44. H. A. David and H. N. Nagaraja, Order statistics. John Wiley & Sons, 2004.
  45. H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi, “Towards scaling blockchain systems via sharding,” in Proceedings of the 2019 International Conference on Management of Data, SIGMOD ’19, (New York, NY, USA), p. 123–140, Association for Computing Machinery, 2019.
  46. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
  47. V. Buterin, “A next-generation smart contract and decentralized application platform,” 2014.
  48. ETSI, “Intelligent Tranport Systems (ITS); Vehicular Communications; Basic Set of Applications; Local Dynamic Map (LDM); Rationale for and guidance on standardization,” Tech. Rep. TR 102 863 V1.1.1, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, June 2011.
  49. ETSI, “Intelligent Transport Systems (ITS); Security; Misbehaviour Reporting service; Release 2,” Tech. Rep. TS 103 759 V2.1.1, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, Jan. 2023.
  50. ETSI, “Intelligent Transport Systems (ITS); Decentralized Congestion Control Mechanisms for Intelligent Transport Systems operating in the 5 GHz range; Access layer part,” Tech. Rep. TS 102 687 V1.2.1, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, Apr. 2018.
  51. IEEE, “IEEE Standard for Wireless Access in Vehicular Environments (WAVE)–Networking Services,” Tech. Rep. 1609.3-2020, Institute of Electrical and Electronics Engineers (IEEE), New Jersey, United States, Mar. 2021.
  52. ETSI, “Intelligent Transport Systems (ITS); Facilities layer function; Part 1: Services Announcement (SA) specification,” Tech. Rep. EN 302 890-1 V1.2.1, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, Apr. 2019.
  53. ETSI, “Intelligent Transport Systems (ITS);Vehicular Communications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality,” Tech. Rep. EN 302 636-4-1 V1.4.1, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, Nov. 2019.
  54. ETSI, “Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 5: Transport Protocols; Sub-part 1: Basic Transport Protocol,” Tech. Rep. TS 302 636-5-1 V2.1.0, European Telecommunications Standards Institute (ETSI), Sophia Antipolis, France, May 2017.

Summary

We haven't generated a summary for this paper yet.