Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Constrained CAV Platoon Control Problem (2401.13552v2)

Published 24 Jan 2024 in eess.SY, cs.SY, and math.OC

Abstract: The main objective of the connected and automated vehicle (CAV) platoon control problem is to regulate CAVs' position while ensuring stability and accounting for vehicle dynamics. Although this problem has been studied in the literature, existing research has some limitations. This paper presents two new theoretical results that address these limitations: (i) the synthesis of unrealistic high-gain control parameters due to the lack of a systematic way to incorporate the lower and upper bounds on the control parameters, and (ii) the performance sensitivity to the communication delay due to inaccurate Taylor series approximation. To be more precise, taking advantage of the wellknown Pade approximation, this paper proposes a constrained CAV platoon controller synthesis that (i) systematically incorporates the lower and upper bounds on the control parameters, and (ii) significantly improves the performance sensitivity to the communication delay. The effectiveness of the presented results is verified through conducting extensive numerical simulations. The proposed controller effectively attenuates the stop-and-go disturbance -- a single cycle of deceleration followed by acceleration -- amplification throughout the mixed platoon (consisting of CAVs and human-driven vehicles). Modern transportation systems will benefit from the proposed CAV controls in terms of effective disturbance attenuation as it will potentially reduce collisions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Y. Zhou, S. Ahn, M. Wang, and S. Hoogendoorn, “Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach,” Transportation Research Part B: Methodological, vol. 132, pp. 152–170, 2020.
  2. A. Popov, A. Hegyi, R. Babuška, and H. Werner, “Distributed controller design approach to dynamic speed limit control against shockwaves on freeways,” Transportation Research Record, vol. 2086, no. 1, pp. 93–99, 2008.
  3. A. Hegyi, S. P. Hoogendoorn, M. Schreuder, and H. Stoelhorst, “The expected effectivity of the dynamic speed limit algorithm specialist-a field data evaluation method,” in European Control Conference (ECC).   IEEE, 2009, pp. 1770–1775.
  4. D. Chen, S. Ahn, M. Chitturi, and D. A. Noyce, “Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles,” Transportation research part B: methodological, vol. 100, pp. 196–221, 2017.
  5. G. Piacentini, A. Ferrara, I. Papamichail, and M. Papageorgiou, “Highway traffic control with moving bottlenecks of connected and automated vehicles for travel time reduction,” in IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 3140–3145.
  6. S. C. Vishnoi, J. Ji, M. Bahavarnia, Y. Zhang, A. F. Taha, C. G. Claudel, and D. B. Work, “Cav traffic control to mitigate the impact of congestion from bottlenecks: A linear quadratic regulator approach and microsimulation study,” Journal on Autonomous Transportation Systems, 2023.
  7. M. Wang, W. Daamen, S. P. Hoogendoorn, and B. van Arem, “Rolling horizon control framework for driver assistance systems. part ii: Cooperative sensing and cooperative control,” Transportation research part C: emerging technologies, vol. 40, pp. 290–311, 2014.
  8. S. Gong, J. Shen, and L. Du, “Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon,” Transportation Research Part B: Methodological, vol. 94, pp. 314–334, 2016.
  9. J. Ma, X. Li, F. Zhou, J. Hu, and B. B. Park, “Parsimonious shooting heuristic for trajectory design of connected automated traffic part ii: Computational issues and optimization,” Transportation Research Part B: Methodological, vol. 95, pp. 421–441, 2017.
  10. Y. Zhou, S. Ahn, M. Chitturi, and D. A. Noyce, “Rolling horizon stochastic optimal control strategy for acc and cacc under uncertainty,” Transportation Research Part C: Emerging Technologies, vol. 83, pp. 61–76, 2017.
  11. B. Van Arem, C. J. Van Driel, and R. Visser, “The impact of cooperative adaptive cruise control on traffic-flow characteristics,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 4, pp. 429–436, 2006.
  12. G. J. Naus, R. P. Vugts, J. Ploeg, M. J. van De Molengraft, and M. Steinbuch, “String-stable cacc design and experimental validation: A frequency-domain approach,” IEEE Transactions on vehicular technology, vol. 59, no. 9, pp. 4268–4279, 2010.
  13. F. Morbidi, P. Colaneri, and T. Stanger, “Decentralized optimal control of a car platoon with guaranteed string stability,” in European Control Conference (ECC).   IEEE, 2013, pp. 3494–3499.
  14. E. Larsson, G. Sennton, and J. Larson, “The vehicle platooning problem: Computational complexity and heuristics,” Transportation Research Part C: Emerging Technologies, vol. 60, pp. 258–277, 2015.
  15. R. Molina-Masegosa and J. Gozalvez, “LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications,” IEEE Vehicular Technology Magazine, vol. 12, no. 4, pp. 30–39, 2017.
  16. K. C. Dey, A. Rayamajhi, M. Chowdhury, P. Bhavsar, and J. Martin, “Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network–performance evaluation,” Transportation Research Part C: Emerging Technologies, vol. 68, pp. 168–184, 2016.
  17. S. A. Ahmad, A. Hajisami, H. Krishnan, F. Ahmed-Zaid, and E. Moradi-Pari, “V2V system congestion control validation and performance,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2102–2110, 2019.
  18. G. Naik, B. Choudhury, and J.-M. Park, “IEEE 802.11 bd & 5G NR V2X: Evolution of radio access technologies for V2X communications,” IEEE access, vol. 7, pp. 70 169–70 184, 2019.
  19. D. Swaroop, J. K. Hedrick, C. Chien, and P. Ioannou, “A comparision of spacing and headway control laws for automatically controlled vehicles1,” Vehicle system dynamics, vol. 23, no. 1, pp. 597–625, 1994.
  20. K. Yi and Y. Do Kwon, “Vehicle-to-vehicle distance and speed control using an electronic-vacuum booster,” JSAE review, vol. 22, no. 4, pp. 403–412, 2001.
  21. K. Li, F. Gao, S. E. Li, Y. Zheng, and H. Gao, “Robust cooperation of connected vehicle systems with eigenvalue-bounded interaction topologies in the presence of uncertain dynamics,” Frontiers of Mechanical Engineering, vol. 13, pp. 354–367, 2018.
  22. P. C. Parks, “A new proof of the routh-hurwitz stability criterion using the second method of liapunov,” in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 58, no. 4.   Cambridge University Press, 1962, pp. 694–702.
  23. C. Thiemann, M. Treiber, and A. Kesting, “Estimating acceleration and lane-changing dynamics from next generation simulation trajectory data,” Transportation Research Record, vol. 2088, no. 1, pp. 90–101, 2008.
  24. P. Apkarian and D. Noll, “Nonsmooth H∞superscript𝐻{H}^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT synthesis,” IEEE Transactions on Automatic Control, vol. 51, no. 1, pp. 71–86, 2006.
  25. P. Gahinet and P. Apkarian, “Structured H∞superscript𝐻{H}^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT synthesis in matlab,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 1435–1440, 2011.
  26. ——, “Decentralized and fixed-structure H∞superscript𝐻{H}^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT control in matlab,” in 50th IEEE Conference on Decision and Control and European Control Conference.   IEEE, 2011, pp. 8205–8210.
  27. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM Journal on optimization, vol. 9, no. 1, pp. 112–147, 1998.
  28. N. Bruinsma and M. Steinbuch, “A fast algorithm to compute the ℋ∞subscriptℋ\mathcal{H}_{\infty}caligraphic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-norm of a transfer function matrix,” Systems & Control Letters, vol. 14, no. 4, pp. 287–293, 1990.
  29. Y. Zhou and S. Ahn, “Robust local and string stability for a decentralized car following control strategy for connected automated vehicles,” Transportation Research Part B: Methodological, vol. 125, pp. 175–196, 2019.
  30. G. B. Thomas, “Calculus and analytic geometry,” Massachusetts Institute of Technology, Massachusetts, USA, Addison-Wesley Publishing Company, ISBN: 0-201-60700-X, 1992.

Summary

We haven't generated a summary for this paper yet.