Silting interval reduction and 0-Auslander extriangulated categories (2401.13513v3)
Abstract: We give a reduction technique for silting intervals in extriangulated categories, which we call "silting interval reduction". It provides a reduction technique for tilting subcategories when the extriangulated categories are exact categories. In 0-Auslander extriangulated categories (a generalization of the well-known two-term category $K{[-1,0]}(\mathsf{proj}\Lambda)$ for an Artin algebra $\Lambda$), we provide a reduction theory for silting objects as an application of silting interval reduction. It unifies two-term silting reduction and Iyama-Yoshino's 2-Calabi-Yau reduction. The mutation theory developed by Gorsky, Nakaoka and Palu recently can be deduced from it. Since there are bijections between the silting objects and the support $\tau$-tilting modules over certain finite dimensional algebras, we show it is compatible with $\tau$-tilting reduction. This compatibility theorem also unifies the two compatibility theorems obtained by Jasso in his work on $\tau$-tilting reduction. We give a new construction for 0-Auslander extriangulated categories using silting mutation, together with silting interval reduction, we obtain some results on silting quivers. Finally, we prove that $d$-Auslander extriangulated categories are related to a certain sequence of silting mutations.
- Οπ\tauitalic_Ο-tilting theory. Compos. Math. 150 (3) (2014) 415-452.
- T. Adachi, M. Tsukamoto. Hereditary cotorsion pairs and silting subcategories in extriangulated categories. J. Algebra 594 (2022) 109-137.
- T. Adachi, M. Tsukamoto. An assortment of properties of silting subcategories of extriangulated categories. arXiv: 2303.08125.
- T. Aihara, O. Iyama. Silting mutation in triangulated categories. J. Lond. Math. Soc. (2) 85 (3) (2012) 633β668.
- Wall and chamber structure for finite-dimensional algebras. Adv. Math. 354 (2019) 106746.
- A. B. Buan, Y. Zhou. Weak cotorsion, Οπ\tauitalic_Ο-tilting and two-term categories. J. Pure Appl. Algebra 228 (1) (2024) 1-18.
- Cluster subalgebras and cotorsion pairs in Frobenius extriangulated categories. Algebr. Represent. Theory 22 (5) (2019) 1051β1081.
- X. Chen. Iyama-Solberg correspondence for exact dg categories. arXiv: 2401.02064.
- Οπ\tauitalic_Ο-tilting finite algebras, bricks, and g-vectors. Int. Math. Res. Not. IMRN (3) (2019) 852β892.
- Reduction of Frobenius extriangulated categories. arXiv: 2308.16232.
- Relative rigid objects in triangulated categories. J. Algebra 520 (2019) 171-185.
- Positive and negative extensions in extriangulated categories. arXiv: 2103.12482.
- Hereditary extriangulated categories: silting objects, mutation, negative extensions. arXiv: 2303.07134.
- n-exangulated categories (I): Definitions and fundamental properties. J. Algebra 570 (2021) 531β586.
- Intermediate co-t-structures, two-term silting objects, Οπ\tauitalic_Ο-tilting modules, and torsion classes. Algebra Number Theory 8 (10) (2014) 2413β2431.
- O. Iyama, D. Yang. Silting reduction and Calabi-Yau reduction of triangulated categories. Trans. Amer. Math. Soc. 370 (11) (2018) 7861β7898.
- O. Iyama, Y. Yoshino. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172 (1) (2008) 117β168.
- G. Jasso. Reduction of Οπ\tauitalic_Ο-tilting modules and torsion pairs. Int. Math. Res. Not. IMRN (16) (2015) 7190β7237.
- B. Keller, D. Vossieck. Aisles in derived categories. Bull. Soc. Math. Belg. SΓ©r. A 40 (2) (1988) 239-253.
- C. Klapproth. n-extension closed subcategories of n-exangulated categories. arXiv: 2209.01128.
- Y. Liu, P. Zhou. Hereditary cotorsion pairs on extriangulated categories. arXiv: 2012.06997.
- Silting reduction in extriangulated categories. arXiv: 2108.07964. To appear on Algebr. Represent. Theory.
- Auslander-Buchweitz context and co-t-structures. Appl. Categ. Struct. 21 (5) (2013) 417β440.
- Localization of extriangulated categories. J. Algebra 611 (2022) 341-398.
- H. Nakaoka, Y. Palu. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. GΓ©om. DiffΓ©r. CatΓ©g. 60 (2) (2019) 117-193.
- Associahedra for finite-type cluster algebras and minimal relations between g-vectors. Proc. Lond. Math. Soc. (3) 127 (3) (2023) 513β588.
- Y. Palu. Some applications of extriangulated categories. arXiv: 2307.10019
- D. Pauksztello, A. Zvonareva. Co-t-structures, cotilting and cotorsion pairs. Math. Proc. Cambridge Philos. Soc. 175 (1) (2023) 89-106.
- J. Sauter. Tilting theory in exact categories. arXiv: 2208.06381.
- W. Yang, B. Zhu. Relative cluster tilting objects in triangulated categories. Trans. Amer. Math. Soc. 371 (1) (2019) 387β412.
- T. Zhao, Z. Huang. Phantom ideals and cotorsion pairs in extriangulated categories. Taiwanese J. Math. 23 (1) (2019) 29β61.
- P. Zhou, B. Zhu. Triangulated quotient categories revisited. J. Algebra 502 (2018) 196-232.
Collections
Sign up for free to add this paper to one or more collections.