Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ordering kinetics in the active Ising model (2401.13471v2)

Published 24 Jan 2024 in cond-mat.stat-mech

Abstract: We undertake a numerical study of the ordering kinetics in the two-dimensional ($2d$) active Ising model (AIM), a discrete flocking model with a conserved density field coupled to a non-conserved magnetization field. We find that for a quench into the liquid-gas coexistence region and in the ordered liquid region, the characteristic length scale of both the density and magnetization domains follows the Lifshitz-Cahn-Allen (LCA) growth law: $R(t) \sim t{1/2}$, consistent with the growth law of passive systems with scalar order parameter and non-conserved dynamics. The system morphology is analyzed with the two-point correlation function and its Fourier transform, the structure factor, which conforms to the well-known Porod's law, a manifestation of the coarsening of compact domains with smooth boundaries. We also find the domain growth exponent unaffected by different noise strengths and self-propulsion velocities of the active particles. However, transverse diffusion is found to play the most significant role in the growth kinetics of the AIM. We extract the same growth exponent by solving the hydrodynamic equations of the AIM.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. S. Ramaswamy, “The mechanics and statistics of active matter,” Annual Review of Condensed Matter Physics 1, 323–345 (2010).
  2. M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao,  and R. A. Simha, “Hydrodynamics of soft active matter,” Reviews of Modern Physics 85, 1143 (2013).
  3. D. Needleman and Z. Dogic, “Active matter at the interface between materials science and cell biology,” Nature Reviews Materials 2, 1 (2017).
  4. G. Gompper, R. G Winkler, T. Speck, A. Solon, C. Nardini, F. Peruani, H. Löwen, R. Golestanian, U. B. Kaupp, L. Alvarez, et al., “The 2020 motile active matter roadmap,” Journal of Physics: Condensed Matter 32, 193001 (2020).
  5. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale,  and V. Zdravkovic, “Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study,” Proceedings of the National Academy of Sciences 105, 1232 (2008).
  6. Ch. Becco, N. Vandewalle, J. Delcourt,  and P. Poncin, “Experimental evidences of a structural and dynamical transition in fish school,” Physica A: Statistical Mechanics and its Applications 367, 487–493 (2006).
  7. D. S. Calovi, U. Lopez, S. Ngo, C. Sire, H. Chaté,  and G. Theraulaz, “Swarming, schooling, milling: phase diagram of a data-driven fish school model,” New Journal of Physics 16, 015026 (2014).
  8. E. B. Steager, C. B. Kim,  and M. J. Kim, “Dynamics of pattern formation in bacterial swarms,” Physics of Fluids 20, 073601 (2008).
  9. F. Peruani, J. Starruß, V. Jakovljevic, L. Søgaard-Andersen, A. Deutsch,  and M. Bär, “Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria,” Physical Review Letters 108 (2012).
  10. V. Schaller, C. Weber, C. Semmrich, E. Frey,  and A. R. Bausch, “Polar patterns of driven filaments,” Nature 467, 73–77 (2010).
  11. Y. Sumino, K. H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté,  and K. Oiwa, “Large-scale vortex lattice emerging from collectively moving microtubules,” Nature 483, 448–452 (2012).
  12. T. Sanchez, D. T. N. Chen, S. J. DeCamp, M. Heymann,  and Z. Dogic, “Spontaneous motion in hierarchically assembled active matter,” Nature 491, 431–434 (2012).
  13. T. Vicsek and A. Zafeiris, “Collective motion,” Physics Reports 517, 71–140 (2012).
  14. M. R. Shaebani, A. Wysocki, R. G. Winkler, G. Gompper,  and H. Rieger, “Computational models for active matter,” Nature Reviews Physics 2, 181 (2020).
  15. G. De Magistris and D. Marenduzzo, “An introduction to the physics of active matter,” Physica A: Statistical Mechanics and its Applications 418, 65–77 (2015).
  16. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen,  and O. Shochet, “Novel type of phase transition in a system of self-driven particles,” Physical Review Letters 75, 1226 (1995).
  17. J. Toner and Y. Tu, “Long-range order in a two-dimensional dynamical XYXY\mathrm{XY}roman_XY model: How birds fly together,” Physical Review Letters 75, 4326 (1995).
  18. J. Toner and Y. Tu, “Flocks, herds, and schools: A quantitative theory of flocking,” Physical Review E 58, 4828 (1998).
  19. A. P. Solon and J. Tailleur, “Revisiting the flocking transition using active spins,” Physical Review Letters 111, 078101 (2013).
  20. A. P. Solon and J. Tailleur, “Flocking with discrete symmetry: The two-dimensional active ising model,” Physical Review E 92, 042119 (2015).
  21. J. Toner, Y. Tu,  and S. Ramaswamy, “Hydrodynamics and phases of flocks,” Annals of Physics 318, 170–244 (2005), special Issue.
  22. L. Giomi, M. J. Bowick, X. Ma,  and M. C. Marchetti, “Defect annihilation and proliferation in active nematics,” Physical Review Letters 110, 228101 (2013).
  23. M. E. Cates and J. Tailleur, “Motility-induced phase separation,” Annual Review of Condensed Matter Physics 6, 219–244 (2015).
  24. A. P. Solon, H. Chaté,  and J. Tailleur, “From phase to microphase separation in flocking models: The essential role of nonequilibrium fluctuations,” Physical Review Letters 114, 068101 (2015).
  25. J. T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck,  and P. Virnau, “Critical behavior of active brownian particles,” Physical Review E 98, 030601 (2018).
  26. A. Wysocki and H. Rieger, “Capillary action in scalar active matter,” Physical Review Letters 124, 048001 (2020).
  27. M. Mangeat, S. Chatterjee, R. Paul,  and H. Rieger, “Flocking with a q𝑞qitalic_q-fold discrete symmetry: Band-to-lane transition in the active potts model,” Physical Review E 102, 042601 (2020).
  28. S. Chatterjee, M. Mangeat, R. Paul,  and H. Rieger, “Flocking and reorientation transition in the 4-state active potts model,” Europhysics Letters 130, 66001 (2020a).
  29. R. Kürsten and T. Ihle, “Dry active matter exhibits a self-organized cross sea phase,” Physical Review Letters 125, 188003 (2020).
  30. M. Fruchart, R. Hanai, P. B. Littlewood,  and V. Vitelli, “Non-reciprocal phase transitions,” Nature 592, 363 (2021).
  31. A. Solon, H. Chaté, J. Toner,  and J. Tailleur, “Susceptibility of polar flocks to spatial anisotropy,” Physical Review Letters 128, 208004 (2022).
  32. S. Chatterjee, M. Mangeat,  and H. Rieger, “Polar flocks with discretized directions: the active clock model approaching the vicsek model,” Europhysics Letters 138, 41001 (2022).
  33. J. Codina, B. Mahault, H. Chaté, J. Dobnikar, I. Pagonabarraga,  and X. Shi, “Small obstacle in a large polar flock,” Physical Review Letters 128, 218001 (2022).
  34. S. Chatterjee, M. Mangeat, C. U. Woo, H. Rieger,  and J. D. Noh, “Flocking of two unfriendly species: The two-species vicsek model,” Physical Review E 107, 024607 (2023).
  35. M. Karmakar, S. Chatterjee, M. Mangeat, H. Rieger,  and R. Paul, “Jamming and flocking in the restricted active potts model,” Physical Review E 108, 014604 (2023).
  36. A. J. Bray, “Theory of phase-ordering kinetics,” Advances in Physics 51, 481–587 (2002).
  37. A. J. Bray, “Theory of phase-ordering kinetics,” Advances in Physics 43, 357 (1994).
  38. S. Puri, “Kinetics of phase transitions,”  (CRC press, 2009) p. 13.
  39. S. Ahmad, F. Corberi, S. K. Das, E. Lippiello, S. Puri,  and M. Zannetti, “Aging and crossovers in phase-separating fluid mixtures,” Physical Review E 86, 061129 (2012).
  40. G. P. Shrivastav, M. Kumar, V. Banerjee,  and S. Puri, “Ground-state morphologies in the random-field ising model: Scaling properties and non-porod behavior,” Physical Review E 90, 032140 (2014).
  41. M. Kumar, S. Chatterjee, R. Paul,  and S. Puri, “Ordering kinetics in the random-bond XY model,” Physical Review E 96, 042127 (2017).
  42. S. Chatterjee, S. Sutradhar, S. Puri,  and R. Paul, “Ordering kinetics in a q𝑞qitalic_q-state random-bond clock model: Role of vortices and interfaces,” Physical Review E 101, 032128 (2020b).
  43. R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen, D. Marenduzzo,  and M. E. Cates, “Scalar φ4superscript𝜑4\varphi^{4}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT field theory for active-particle phase separation,” Nature Communications 5, 4351 (2014).
  44. S. Pattanayak, S. Mishra,  and S. Puri, “Ordering kinetics in the active model B,” Physical Review E 104, 014606 (2021a).
  45. S. Pattanayak, S. Mishra,  and S. Puri, “Domain growth in the active model b: Critical and off-critical composition,” Soft Materials 19, 286 (2021b).
  46. S. Mishra, S. Puri,  and S. Ramaswamy, “Aspects of the density field in an active nematic,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, 20130364 (2014).
  47. R. Das, S. Mishra,  and S. Puri, “Ordering dynamics of self-propelled particles in an inhomogeneous medium,” Europhysics Letters 121, 37002 (2018).
  48. S. Saha, J. Agudo-Canalejo,  and R. Golestanian, “Scalar active mixtures: The nonreciprocal cahn-hilliard model,” Physical Review X 10, 041009 (2020).
  49. Y. Rouzaire and D. Levis, “Dynamics of topological defects in the noisy kuramoto model in two dimensions,” Frontiers in Physics 10, 976515 (2022).
  50. F. Dittrich, J. Midya, P. Virnau,  and S. K. Das, “Growth and aging in a few phase-separating active matter systems,” Physical Review E 108, 024609 (2023).
  51. C. B. Caporusso, L. F. Cugliandolo, P. Digregorio, G. Gonnella, D. Levis,  and A. Suma, “Dynamics of motility-induced clusters: coarsening beyond ostwald ripening,” Physical Review Letters 131, 068201 (2023).
  52. N. Katyal, S. Dey, D. Das,  and S. Puri, “Coarsening dynamics in the vicsek model of active matter,” The European Physical Journal E 43, 10 (2020).
  53. S. Dikshit and S. Mishra, “Ordering kinetics in active polar fluid,” Europhysics Letters 143, 17001 (2023).
  54. S. Majumder and S. K. Das, “Diffusive domain coarsening: Early time dynamics and finite-size effects,” Physical Review E 84, 021110 (2011).
  55. S. Chatterjee, S. Puri,  and R. Paul, “Ordering kinetics in the q𝑞qitalic_q-state clock model: Scaling properties and growth laws,” Physical Review E 98, 032109 (2018).
  56. S. Dey, D. Das,  and R. Rajesh, “Spatial structures and giant number fluctuations in models of active matter,” Physical Review Letters 108, 238001 (2012).
  57. B. Yurke, A. N. Pargellis, T. Kovacs,  and D. A. Huse, “Coarsening dynamics of the XY model,” Physical Review E 47, 1525 (1993).
  58. B. Benvegnen, H. Chaté, P. L. Krapivsky, J. Tailleur,  and A. Solon, “Flocking in one dimension: Asters and reversals,” Physical Review E 106, 054608 (2022).
  59. W. H. Press, Numerical recipes: The art of scientific computing (Cambridge university press, 2007).
  60. G. S. Grest, M. P. Anderson,  and D. J. Srolovitz, “Domain-growth kinetics for the Q-state potts model in two and three dimensions,” Physical Review B 38, 4752 (1988).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com