Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

How to Forget Clients in Federated Online Learning to Rank? (2401.13410v1)

Published 24 Jan 2024 in cs.CR, cs.IR, and cs.LG

Abstract: Data protection legislation like the European Union's General Data Protection Regulation (GDPR) establishes the \textit{right to be forgotten}: a user (client) can request contributions made using their data to be removed from learned models. In this paper, we study how to remove the contributions made by a client participating in a Federated Online Learning to Rank (FOLTR) system. In a FOLTR system, a ranker is learned by aggregating local updates to the global ranking model. Local updates are learned in an online manner at a client-level using queries and implicit interactions that have occurred within that specific client. By doing so, each client's local data is not shared with other clients or with a centralised search service, while at the same time clients can benefit from an effective global ranking model learned from contributions of each client in the federation. In this paper, we study an effective and efficient unlearning method that can remove a client's contribution without compromising the overall ranker effectiveness and without needing to retrain the global ranker from scratch. A key challenge is how to measure whether the model has unlearned the contributions from the client $c*$ that has requested removal. For this, we instruct $c*$ to perform a poisoning attack (add noise to this client updates) and then we measure whether the impact of the attack is lessened when the unlearning process has taken place. Through experiments on four datasets, we demonstrate the effectiveness and efficiency of the unlearning strategy under different combinations of parameter settings.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.