Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetric, Optimization-based, Cross-element Compatible Nodal Distributions for High-order Finite Elements (2401.13209v3)

Published 24 Jan 2024 in math.NA and cs.NA

Abstract: We present a general framework to construct symmetric, well-conditioned, cross-element compatible nodal distributions that can be used for high-order and high-dimensional finite elements. Starting from the inherent symmetries of an element geometry, we construct node groups in a systematic and efficient manner utilizing the natural coordinates of each element, while ensuring nodes stay within the elements. Proper constraints on the symmetry group lead to nodal distributions that ensure cross-element compatibility (i.e., nodes of adjacent elements are co-located) on both homogeneous and mixed meshes. The final nodal distribution is defined as a minimizer of an optimization problem over symmetry group parameters with linear constraints that ensure nodes remain with an element and enforce other properties (e.g., cross-element compatibility). We demonstrate the merit of this framework by comparing the proposed optimization-based nodal distributions with other popular distributions available in the literature, and its robustness by generating optimized nodal distributions for otherwise difficult elements (such as simplex and pyramid elements). All nodal distributions are tabulated in the optnodes package [22].

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. L.P Bos. Bounding the lebesgue function for lagrange interpolation in a simplex. Journal of Approximation Theory, 38(1):43–59, 1983.
  2. Tensor product gauss-lobatto points are fekete points for the cube. Math. Comput., 70:1543–1547, 10 2001.
  3. Qi Chen and Ivo Babuška. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Computer Methods in Applied Mechanics and Engineering, 128(3):405–417, 1995.
  4. D. A. Dunavant. High degree efficient symmetrical gaussian quadrature rules for the triangle. International Journal for Numerical Methods in Engineering, 21(6):1129–1148, 1985.
  5. Leopold Fejér. Bestimmung derjenigen abszissen eines intervalles, für welche die quadratsumme der grundfunktionen der lagrangeschen interpolation im intervalle ein möglichst kleines maximum besitzt. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 1(3):263–276, 1932.
  6. M. Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z., 17(1):228–249, 1923.
  7. J. S. Hesthaven. From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM Journal on Numerical Analysis, 35(2):655–676, 1998.
  8. Stable spectral methods on tetrahedral elements. SIAM Journal on Scientific Computing, 21(6):2352–2380, 2000.
  9. Jan Hesthaven. From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal., 35, 02 1997.
  10. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, volume 54. 01 2007.
  11. Tobin Isaac. Recursive, parameter-free, explicitly defined interpolation nodes for simplices, 02 2020.
  12. A spectral method for triangular prism. Applied Numerical Mathematics, 129:26–38, 2018.
  13. A New Spectral Method on Triangles, volume 76, pages 237–246. 10 2010.
  14. J. Lyness and Ronald Cools. A survey of numerical cubature over triangles. Proceedings of Symposia in Applied Mathematics American Mathematical Society Providence, RI, 48, 04 1994.
  15. Spectral element methods on triangles and quadrilaterals: comparisons and applications. Journal of Computational Physics, 198(1):349–362, 2004.
  16. An algorithm for computing fekete points in the triangle. SIAM Journal on Numerical Analysis, 38(5):1707–1720, 2000.
  17. Generalized diagonal mass matrix spectral element method for non-quadrilateral elements. Applied Numerical Mathematics - APPL NUMER MATH, 33:259–265, 05 2000.
  18. S. Wandzurat and H. Xiao. Symmetric quadrature rules on a triangle. Computers & Mathematics with Applications, 45(12):1829–1840, 2003.
  19. On the identification of symmetric quadrature rules for finite element methods. Computers & Mathematics with Applications, 69(10):1232–1241, 2015.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com