Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frustrated Random Walks: A Fast Method to Compute Node Distances on Hypergraphs (2401.13054v3)

Published 23 Jan 2024 in cs.SI, cs.DM, and cs.LG

Abstract: A hypergraph is a generalization of a graph that arises naturally when attribute-sharing among entities is considered. Compared to graphs, hypergraphs have the distinct advantage that they contain explicit communities and are more convenient to manipulate. An open problem in hypergraph research is how to accurately and efficiently calculate node distances on hypergraphs. Estimating node distances enables us to find a node's nearest neighbors, which has important applications in such areas as recommender system, targeted advertising, etc. In this paper, we propose using expected hitting times of random walks to compute hypergraph node distances. We note that simple random walks (SRW) cannot accurately compute node distances on highly complex real-world hypergraphs, which motivates us to introduce frustrated random walks (FRW) for this task. We further benchmark our method against DeepWalk, and show that while the latter can achieve comparable results, FRW has a distinct computational advantage in cases where the number of targets is fairly small. For such cases, we show that FRW runs in significantly shorter time than DeepWalk. Finally, we analyze the time complexity of our method, and show that for large and sparse hypergraphs, the complexity is approximately linear, rendering it superior to the DeepWalk alternative.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets