Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear dynamics in neuromorphic photonic networks: physical simulation in Verilog-A (2401.12942v1)

Published 23 Jan 2024 in cs.ET, physics.app-ph, and physics.optics

Abstract: Advances in silicon photonics technology have enabled the field of neuromorphic photonics, where analog neuron-like processing elements are implemented in silicon photonics technology. Accurate and scalable simulation tools for photonic integrated circuits are critical for designing neuromorphic photonic circuits. This is especially important when designing networks with recurrent connections, where the dynamics of the system may give rise to unstable and oscillatory solutions which need to be accurately modelled. These tools must simultaneously simulate the analog electronics and the multi-channel (wavelength-division-multiplexed) photonics contained in a photonic neuron to accurately predict on-chip behaviour. In this paper, we utilize a Verilog-A model of the photonic neural network to investigate the dynamics of recurrent integrated circuits. We begin by reviewing the theory of continuous-time recurrent neural networks as dynamical systems and the relation of these dynamics to important physical features of photonic neurons such as cascadability. We then present the neural dynamics of systems of one and two neurons in the simulated Verilog-A circuit, which are compared to the expected dynamics of the abstract CTRNN model. Due to the presence of parasitic circuit elements in the Verilog-A simulation, it is seen that there is a topological equivalence, but not an exact isomorphism, between the theoretical model and the simulated model. The implications of these discrepancies for the design of neuromorphic photonic circuits are discussed. Our findings pave the way for the practical implementation of large-scale silicon photonic recurrent neural networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. J. Backus, Communications of the ACM 21, 613 (1978).
  2. R. S. Williams, Computing in Science & Engineering 19, 7 (2017).
  3. J. Hasler and H. Marr, Frontiers in Neuroscience 7 (2013).
  4. A. R. Ravishankara, D. A. Randall, and J. W. Hurrell, Proceedings of the National Academy of Sciences 119, e2120669119 (2022).
  5. P. R. Prucnal and B. J. Shastri, Neuromorphic Photonics (CRC Press, 2017).
  6. J. J. Hopfield, Proceedings of the National Academy of Sciences 79, 2554 (1982).
  7. J. J. Hopfield and D. W. Tank, Science 233, 625 (1986).
  8. M. Kennedy and L. Chua, IEEE Transactions on Circuits and Systems 35, 554 (1988).
  9. U.-P. Wen, K.-M. Lan, and H.-S. Shih, European Journal of Operational Research 198, 675 (2009).
  10. J. W. Goodman, Optica Acta: International Journal of Optics 32, 1489 (1985).
  11. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University Press, 2015).
  12. K. Hornik, M. Stinchcombe, and H. White, Neural Networks 2, 359 (1989).
  13. R. D. Beer, Adaptive Behavior 3, 469 (1995).
  14. X. D. Li, J. Ho, and T. Chow, IEEE Transactions on Circuits and Systems II: Express Briefs 52, 656 (2005).
  15. C. C. McAndrew, in 2017 47th European Solid-State Device Research Conference (ESSDERC) (2017) pp. 22–25.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Hugh Morison (2 papers)
  2. Jagmeet Singh (5 papers)
  3. Nayem Al Kayed (1 paper)
  4. A. Aadhi (12 papers)
  5. Maryam Moridsadat (3 papers)
  6. Marcus Tamura (5 papers)
  7. Alexander N. Tait (24 papers)
  8. Bhavin J. Shastri (42 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com